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1. Algorithm

Our method is summarized in Algorithm 1. In each itera-

tion, the INN g and backbone network, which consists of

feature extractor F and classifier C, are both trained. The

loss functions are shown as follows:

min
g

LossSew = DM(fs2t,f t) +DM(f t2s,fs), (1)

min
F,C

LossS + LossT = Lce(C(fs),ys)+

Lce(C(fs2t),ys) + LC(C(f t), C(f t2s)),
(2)

where DM(·, ·) refers to any existing distribution matching

method, Lce(·, ·) denotes the cross entropy function, and

LC(·, ·) is a consistency constraint.

Algorithm 1 HMA

Input: Source domain Ds = {(xs
i ,y

s
i )}

ns

i=1
, target domain

Dt = {(xt
i)}

nt

i=1
, the epoch number T , the mini-batch

number M .

Output: An adapted model.

Procedure:

1: for t = 1:T do

2: for m = 1:M do

3: Forward a mini-batch through the feature

extractor F and get source features fs and target

features f t;

4: Generate transformed source features f t2s and

transformed target features fs2t by INN;

5: Select a domain adaptation method and train INN

based on Eq. 1;

6: Train the backbone network based Eq.2;

7: end for

8: end for

9: return Adapted model.

*corresponding author.

Table 1. Up-bound performance probing: Comparing different

distribution alignment strategies on Office-31 using the ground-

truth target sample labels. SMM: Statistic moment matching; AL:

Adversarial learning; OP: Optimal transport; SL: Self-supervised

learning; BA:Bijection alignment.

Component A→D A→W D→A W→A

1 SMM 99.9±0.1 99.9±0.0 92.6±0.2 93.8±0.1

2 AL 99.2±0.1 99.8±0.1 90.9±0.2 92.3±0.1

3 OP 96.2±0.1 98.8±0.1 89.9±0.2 90.9±0.1

4 SL 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

5 BA 97.8±0.2 98.9±0.1 90.7±0.1 93.2±0.2

6 Ours 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

2. Implementation of methods in Table 1

In Table 1, we evaluate classical domain adaptation strate-

gies given ground-truth labels. Since the ground-truth labels

are used, we need to modify these methods accordingly as

follows.

For the first row in Table 1, CAN [4] is selected to test

the statistic moment matching strategy, one of the best sta-

tistical moment matching methods. Specifically, it uses

the clustering algorithm to pseudo-label all target domain

samples, and then uses the CAS strategy to sample tar-

get domain samples with high-confidence pseudo-label and

source samples; Finally, it minimizes the inter-class cross

domain discrepancy and maximizes the intra-class cross do-

main discrepancy as follows:

min
F

LossCAN =

C∑

c=1

MMD(fs,c,f t,ĉ)

−

C∑

c1=1

C∑

c2 ̸=c1

MMD(fs,c1 ,f t,ĉ2),

(3)

where MMD(A,B) represents the MMD discrepancy be-

tween A and B, fs,c represents the source features with true

label c and f t,ĉ represents the target features with pseudo



Table 2. Comparisons with the state-of-the-art methods on DomainNet dataset. Metric: classification accuracy (%); Backbone: ResNet-50.

For each cross-domain pair, the source/target domains are specified in the corresponding row/column fields.

ResNet clp inf pnt qdr rel skt Avg. MCD clp inf pnt qdr rel skt Avg. BNM clp inf pnt qdr rel skt Avg.

clp - 14.2 29.6 9.5 43.8 34.3 26.3 clp - 15.4 25.5 3.3 44.6 31.2 24.0 clp - 12.1 33.1 6.2 50.8 40.2 28.5

inf 21.8 - 23.2 2.3 40.6 20.8 21.7 inf 24.1 - 24.0 1.6 35.2 19.7 20.9 inf 26.6 - 28.5 2.4 38.5 18.1 22.8

pnt 24.1 15.0 - 4.6 45.0 29.0 23.5 pnt 31.1 14.8 - 1.7 48.1 22.8 23.7 pnt 39.9 12.2 - 3.4 54.5 36.2 29.2

qdr 12.2 1.5 4.9 - 5.6 5.7 6.0 qdr 8.5 2.1 4.6 - 7.9 7.1 6.0 qdr 17.8 1.0 3.6 - 9.2 8.3 8.0

rel 32.1 17.0 36.7 3.6 - 26.2 23.1 rel 39.4 17.8 41.2 1.5 - 25.2 25.0 rel 48.6 13.2 49.7 3.6 - 33.9 29.8

skt 30.4 11.3 27.8 3.4 32.9 - 21.2 skt 37.3 12.6 27.2 4.1 34.5 - 23.1 skt 54.9 12.8 42.3 5.4 51.3 - 33.3

Avg. 24.1 11.8 24.4 4.7 33.6 23.2 20.3 Avg. 28.1 12.5 24.5 2.4 34.1 21.2 20.5 Avg. 37.6 10.3 31.4 4.2 40.9 27.3 25.3

SWD clp inf pnt qdr rel skt Avg. CAN clp inf pnt qdr rel skt Avg. HMA(CAN) clp inf pnt qdr rel skt Avg.

clp - 14.7 31.9 10.1 45.3 36.5 27.7 clp - 17.3 38.4 8.6 53.2 39.7 31.4 clp - 18.9 43.4 9.9 54.7 45.4 34.5

inf 22.9 - 24.2 2.5 33.2 21.3 20.0 inf 33.5 - 34.2 4.7 51.2 26.7 30.1 inf 35.9 - 37.2 5.7 54.5 30.8 32.8

pnt 33.6 15.3 - 4.4 46.1 30.7 26.0 pnt 39.9 14.5 - 8.2 59.4 33.7 31.1 pnt 42.6 14.9 - 10.8 61.4 35.1 33.0

qdr 15.5 2.2 6.4 - 11.1 10.2 9.1 qdr 25.9 3.0 10.8 - 13.7 14.9 13.7 qdr 31.0 5.8 15.0 - 15.9 16.2 16.8

rel 41.2 18.1 44.2 4.6 - 31.6 27.9 rel 52.4 16.9 46.3 3.9 - 41.9 32.3 rel 53.1 18.8 47.0 4.1 - 43.0 33.2

skt 44.2 15.2 37.3 10.3 44.7 - 30.3 skt 53.9 17.5 45.9 15.5 57.6 - 38.1 skt 55.8 18.3 47.3 17.5 59.3 - 39.6

Avg. 31.5 13.1 28.8 6.4 36.1 26.1 23.6 Avg. 41.1 13.8 35.1 8.2 47.0 31.4 29.5 Avg. 43.7 15.3 38.0 9.6 49.2 34.1 31.7

a) original data b) data transformed by 

homeomorphism 

c) data transformed by linear 

network

Figure 1. The empirical visualization of homomorphism and linear network.

label c. Given the ground-truth labels of the target domain,

there is no need for the pseudo labels, and we can directly

sample all target samples to perform distribution alignment

as:

min
F

Lossmod
CAN =

C∑

c=1

MMD(fs,c,f t,c)

−

C∑

c1=1

C∑

c2 ̸=c1

MMD(fs,c1 ,f t,c2),

(4)

where f t,c represents the target features with true label c.

In this case, the feature extractor is retrained by Eq. 4; the

source classifier is retrained by source samples.

For the second row in Table 1, CDAN [7] is selected to

test adversarial learning strategy. CDAN considers the pre-

diction of the classifier carry the discriminative information

useful for aligning the conditional distribution between two

domains. Specifically, it first introduces a domain discrimi-

nator D to perform domain classification. The input of the

domain discriminator is the outer product of features and

predictions and the loss function is defined as follows:

min
F

max
D

LossCDAN = log[D(fs
i ⊗ ps

i )]

+ log[1−D(f t
i ⊗ pt

i)],
(5)

where ⊗ is the outer product, ps
i is the prediction of i-th

source sample and pt
i is the prediction of i-th target sam-

ple. While in our test, ground-truth labels are available dur-

ing the training, we perform an one-hot operation on the

ground-truth labels ys
i and yt

i to get lsi and lti , and train the

feature extraction network and the discrimination network

in the following way:

min
F

max
D

Lossmod
CDAN = log[D(fs

i ⊗ lsi )]

+ log[1−D(f t
i ⊗ lti)].

(6)

In this case, the feature extractor is retrained by Eq. (6);

The source classifier is retrained by source samples.

For the third row in Table 1, it reports the optimal trans-

port strategy. With this strategy, DeepJDOT [2] minimizes



Figure 2. (Left) Distribution of fs and f t; (Middle) Distribution of fs2t and f t; (Right) Distribution of fs and f t2s. Purple: source

features; Yellow: target features. Red box: highlights.

the discrepancy of joint deep feature/labels domain distri-

butions as follows:

min
F,M

LossOP =
∑

i

∑

j

mi,j(α∥f
s
i − f t

j∥
2 + βL(ys

i , ŷ
t
j)),

(7)

where M means coupling matrix and mi,j is the element

of its row i and column j, α and β are two hyperparame-

ters, L(·, ·) is a similarity function, such as hinge or cross-

entropy. The optimization by Eq. 7 is generally divided into

two steps: first optimizing the coupling matrix M , and then

optimizing the feature extractor F . When the true target

labels yt
i are given, it can be trained as follows:

min
F,M

Lossmod
OP =

∑

i

∑

j

mi,j(α∥f
s
i − f t

j∥
2 + βL(ys

i ,y
t
j)),

(8)

In this case, our training is also divided into two steps,

which first finds coupling matrix M and optimizes the fea-

ture extractor. The source classifier is retrained by source

samples.

For the fourth row in Table 1, it reports the self-

supervised training strategy. Traditional methods based on

this strategy [6] usually assign target sample a pseudo-label

ŷt
i , and use pseudo-labels to train the model as follows:

min
F,C

LossSELF = Lce(ps
i ,y

s
i ) + Lce(pt

i, ŷ
t
i), (9)

where C means the classifier. When the true target labels

yt
i are given, it can be directly supervised train the model as

follows:

min
F,C

Lossmod
SELF = Lce(ps

i ,y
s
i ) + Lce(pt

i,y
t
i), (10)

In this case, the feature extractor and source classifier are

retrained by Eq. 10.

For the fifth row in Table 1, it uses two different networks

to learn two transformations, which maps the source fea-

tures to the target feature space and vice versa. Specifically,

two linear networks Fs2t(·) and Ft2s(·) are introduced, and

we have fs2t = Fs2t(f
s), f t2s = Ft2s(f

t). We hope the

transformed features can be aligned to original features in

their feature spaces respectively. In this test, we also have

true labels from both source domain and target domain and

use CAN to align the distributions between transformed fea-

tures and original features, which is shown as follows:

min
Fs2t,Ft2s

LossDoublemap =

C∑

c=1

MMD(fs,c,f t2s,c)−

C∑

c1=1

C∑

c2 ̸=c1

MMD(fs,c1 ,f t2s,c2)

+
C∑

c=1

MMD(fs2t,c,f t,c)−
C∑

c1=1

C∑

c2 ̸=c1

MMD(fs2t,c1 ,f t,c2).

(11)

In this case, the feature extractor is retrained by Eq. 11; The

source classifier is retrained by source samples.

For the sixth line in Table 1, which is our method based

on ground-truth label, we introduce invertible neural net-

work g to connect two feature spaces. Specifically, the

transformed features can be obtained by g as fs2t = g(fs)
and f t2s = g−1(f t). Due to the ground-truth target labels

are available. Therefore, We just need to modify our sewing

up operation to the following:

min
g

LossHMA =

C∑

c=1

MMD(fs,c,f t2s,c)−

C∑

c1=1

C∑

c2 ̸=c1

MMD(fs,c1 ,f t2s,c2)

+

C∑

c=1

MMD(fs2t,c,f t,c)−

C∑

c1=1

C∑

c2 ̸=c1

MMD(fs2t,c1 ,f t,c2).

(12)

In this case, the feature extractor and source classifier are

retrained in two spaces.

Table 3. Different loss functions for consistency constraint on

Office-31 and Office-home. CE: Cross Entropy; L2: L2-Norm.

Loss A→D A→W D→A D→W W→A W→D Office-home

CE 95.8 94.9 79.4 99.1 77.8 100.0 72.9

L2 95.8 95.1 79.3 99.3 77.6 100.0 73.2



Table 4. Block number analysis on Office-31 (first two rows) and

Office-home (last two rows) . HMA(DAN): Sewing up by DAN;

HMA(CAN): Sewing up by CAN.

Block number 1 2 3 4 5

HMA(DAN) 78.2 82.4 82.9 83.5 83.9

HMA(CAN) 87.6 89.4 90.3 90.7 91.2

HMA(DAN) 56.9 59.2 60.5 61.7 62.4

HMA(CAN) 69.2 70.9 71.8 72.6 73.2

Table 5. Test on Office-31. f t: classify f t directly; f t2s: trans-

form f t to f t2s then classify f t2s; f t+f t2s: ensemble these two

strategies.

Strategy A→D A→W D→A D→W W→A W→D

f t 95.3 94.7 78.5 98.9 77.2 100.0

f t2s 95.1 94.7 78.7 99.2 76.9 100.0

f t+f t2s 95.8 95.1 79.3 99.3 77.6 100.0

3. Experiments

3.1. Comparisons to StateoftheArt on DomainNet

DomainNet [8] is one of the most challenging datasets in

domain adaptation. It contains about 600 thousand images

in 345 categories from 6 domains: Clipart (C), Infograph

(I), Painting (P), Quickdraw (Q), Real (R) and Sketch (S).

We compare our method HMA(CAN) with existing state-

of-the-art methods: MCD [9], BNM [1], SWD [5] and CAN

[4]. ResNet-50 is used as backbone for all methods. As

shown in Table 2, our method HMA(CAN) surpasses all

the previous alternatives by a large margin. This verifies the

generic advantage of our approach in this more challenging

larger-scale benchmark.

3.2. Model analysis

Visualization of homeomorphism. For conceptual il-

lustration of homeomorphism, we experiment with hand-

designed toy data. Concretely, we first construct 100 2-

dimensional feature points for three different clusters re-

spectively, as shown in Figure 1(a) in purple, yellow and

green. We then transform these points with an INN based

homeomorphism mapping. As we observe in Figure 1(b),

the transformed points still preserve the structural clus-

ter/group information. At the same time, we transform

these points with a linear network, as shown in Figure 1(c).

The transformed points do not preserve the structural clus-

ter/group information, as seen that the yellow and green

points are mixed. Please note both INN and linear network

are not trained, but only initialized by Gaussian distribution.

In addation, we further visualize the alignments in each

space on the task A→R of Office-Home. As shown in

Fig.2(Left), both domains (fs, f t) have similar topologi-

cal structure, verifying the realization of homeomorphism.

The distances of the same category in Fig.2(Middle) and

(a) A → D

(b) D → A

Figure 3. The accurary of different sewing up strategies using INN

on Ofiice-31. The curves named Target space and Source space are

unilateral sewing up strategies which are performed in the target

feature space and source feature space respectively. The curve

named Bi-alignment means the bilateral sewing up strategy.

Fig.2(Right) are smaller than that in Fig.2(Left), showing

the alignment by homeomorphism.

Loss function for consistency constraint. For LC(·, ·),
we use L2-Norm to implement the consistency constraint on

the unlabeled target features f t and f t2s. To evaluate the

effect of this loss function selection, we further test cross

entropy on Office-31 and Office-home with HMA(CAN).

As shown in Table 3, the performance of our method is

marginally affected by the loss function selection, suggest-

ing the stability and flexibility of our model.

How many blocks of INN do we need? The forward

and invertible process of INN for each block are shown



Figure 4. Visualization of ablation study using t-SNE on the task W → A of Office-31.

in method section, so we need to discuss how many INN blocks we need. As shown in Table 4, the average accu-



Original

image

HMA(DAN)

Bijection(CAN)

CAN

HMA(CAN)

back_pack bike           bike_helmet bookcase

Figure 5. Attention visualization on Office-31 task W → A.

racy on Office-31 and Office-home are reported. It can be

found that when the block number is increased from 1 to

2, the performance of both HMA(DAN) and HMA(CAN)

also greatly improve; While further increased to 5 blocks,

the performance increase starts to saturate relatively. This

is because when the block number is 1, the y1 in the out-

put of the INN and the x1 in the input are linearly related,

i.e.
∂y1

∂x1

= I where I is the identity matrix. When the

block number becomes 2, there is no such linear relation-

ship, which makes the network has more capacity. In addi-

tion, as the number of blocks in the network increases, the

nonlinearity of the network also becomes stronger, result-

ing in better results. Of course, before the learning ability

is saturated, more blocks will definitely have better learn-

ing ability, but considering the computational overhead, we

finally chose 5 blocks.

Unilateral sewing up or bilateral sewing up? In our

method, when the distributions between f t and fs2t are

aligned, the discrepancy between fs and f t2s can also be

minimized due to the reversibility of the INN, and vice

versa. But in our method, we do not use this unilateral

sewing up but bilateral sewing up, i.e., fs and f t2s; f t and

fs2t are aligned as shown in Eq. 1. We compare three

strategies: unilateral sewing up: only alignment between

f t and fs2t in target feature space or only alignment fs

and f t2s in source feature space; and bilateral sewing up

where the above mentioned pairs are all aligned. We select
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Bijection(CAN)
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Figure 6. Attention visualization on Office-31 task W → A.

HMA(CAN) as the baseline and conduct experiments on

A→D and D→A tasks of Office-31. From the experimen-

tal results, the bilateral sewing up can make training faster

than other two strategies. In addition, we also find that bi-

lateral sewing up can get better performance compared with

unilateral sewing up.

How to use our model? Our method do alignment in

two spaces, it is natural to ask a problem in which space

using our model. There are three strategies: using our

model in the target feature space f t, or in the source fea-

ture space f t2s or in both source and target feature spaces

where the average prediction is considered as the final re-

sult. We test these three strategies on Office-31 dataset us-

ing HMA(CAN), which is shown in Table 5. From the ex-

perimental results, the effect of adopting the ensemble strat-

egy is slightly better than others, so for using our model, we

adopt this ensemble strategy.

Visual analysis by t-SNE. To intuitively understand the

proposed HMA, we use t-SNE [11] to visualize the classifi-

cation results on Office-31 based on four different strategies:

adversarial learning (CDAN), optimal transport (DeepJ-

DOT), bi-classifier adversarial learning (MCD) and statis-

tic moment matching (CAN). as shown in Fig. 4. From

left to right, the visualization images represent the visual-

ization results of the baseline method, the alignment results

using INN on the baseline method, and the visualization
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Figure 7. Network structure of Resnet-50.

FC

BatchNorm

ReLU

(2048)

(2048)

FC

ReLU

FC

(1024)

(1024)

(1024) (2048)

(a) (b)

FC

FC

FCFC

FC ReLU

ReLU

Figure 8. (a) Network structure of s(·) and t(·) in HMA. (b) Network structure of double mapping Fs2t(·) and Ft2s(·).

results of our final proposed method, respectively. From

Fig. 4, it can be seen that only using INN to sew up two

domains can achieve similar results with the previous align-

ment method. HMA shows a huge improvement over other

visualization results. This is because in addition to the dis-

tribution alignment using INN, our HMA approach further

applies the property of INN to train the feature extractor and

classifier and yields better performance.

Visual analysis by Grad-CAM. We make visualization

analysis by Grad-CAM [10] on Office-31 task W → A

in Fig.5 and Fig.6. We randomly select 8 categories. For

each category, one image is randomly selected in activation

mapping visualization. It is evident that, the attention of

HMA(DAN) and Bijection(CAN) is largely not complete.

Compared with the above two methods, CAN is slightly bet-

ter, but still lags behind in the accuracy. Our HMA(CAN)

can best estimate the attention overall.

Network structure Here we will detail the neural net-

work we use. For the feature extractor, ResNet [3] is used,

but its original last layer, a fully connected linear layer for

classification, is removed. It is worth noting that the dimen-

sion size of features yielded by feature extractor of both

ResNet-50 and ResNet-101 is 2048. The structure is de-

tailed as follows.



For the classifier, a fully connected linear layer is con-

structed for suit our tasks, which maps features to predic-

tions. The dimension size of predictions is the category

number, specific for different datasets. Specifically, the di-

mensions of prediction are 31, 65, 12, 345 in Office-31,

Office-home, Visda-17 and domainnet respectively. For the

INN, the affine network is used. Specifically, it consists of

two two-layers linear networks s(·) and t(·). The structure

of s(·) and t(·) are the same. Specifically, the network s(·)
consists of two fully connected neural networks and a ReLU

function. The detail is given in Fig.8(a).

We also discuss that using two different linear networks

Fs2t(·) and Ft2s(·) to learn the mappings between two fea-

ture spaces. The structures of Fs2t(·) and Ft2s(·) are iden-

tical, composed of four blocks. Each block consists of a

fully connected neural networks with a batchnorm and a

relu function. The specific structure is given in Fig.8(b).
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