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We present a two-stage (hybrid) framework for improv-
ing multi-instance pose estimation that is designed to tackle
crowded scenarios. Our bottom-up conditioned top-down
pose estimation (BUCTD) framework reaches state-of-the-
art performance on both human [9, 18] and animal bench-
marks [8], outperforming bottom-up, single-stage, top-
down, and the recently proposed hybrid top-down methods,
such as MIPNet [6].

In the following, we provide additional implementation
details, compare the general detection performance of the
bottom-up stage, and evaluate the type of conditional train-
ing data that gives best CTD results. We conclude by show-
ing that the computational costs of BUCTD compare favor-
ably to the standard detector+TD pipeline, as well as suc-
cess and failure cases of the BUCTD model.

*Authors contributed equally to this work.

Overall, our work demonstrated that providing individ-
ual detections and conditional pose input derived from a
bottom-up pose detector to a Conditional Pose Estima-
tor (CTD) can effectively boost performance in crowded
scenes.

A. Implementation details
We report training and implementation details for the

bottom-up and the conditional top-down models applied to
both human benchmarks and animal benchmarks.

A.1. Training settings for bottom-up pose detectors

In order to create pose proposals from bottom-up mod-
els, we trained DLCRNet-ms4 [8] on the animal bench-
marks, and HigherHRNet-W32 using mmpose [3] on the
human benchmarks. We show the default training settings
in Table S1.

Hyperparameters Animal Benchmarks Human Benchmarks
DLCRNet HrHRNet-W32

Optimizer Adam [7] Adam [7]
Base learning rate 0.0001 0.0015
Learning rate sched. step [7500, 12000] step [200, 260]
Learning rate drop (γ) [0.5, 0.2] 0.1
Training epochs - 300
Training iterations 60,000 -
Warmup iterations - 500
Warmup ratio - 0.001
Batch size 8 40
Input resolution 400 × 400 512 × 512
Rotation 24◦ 30◦

Scale [0.5, 1.25] [0.75, 1.5]
RandomFlip - 0.5

Table S1. Default training settings for bottom-up models. We
applied these hyperparameters and training data settings to the
bottom-up models (DLCRNet for animal datasets, and HigherHR-
Net for human benchmarks).

Note that the HigherHRNet-W32 is trained with the
same settings for COCO [10] (used also for inference on
OCHuman [18]) and CrowdPose [9]. We furthermore used



Figure S1. Additional predictions using BUCTD-CoAM-W48 with conditional inputs from PETR on the CrowdPose test set.

the same settings of the DLCRNet as in Table S1 on all three
animal datasets.

A.2. Training settings for conditional top-down
(CTD) pose estimators

Here we provide the default parameter settings for
CTD-CoAM-W32/48 and CTD-TP-H-A6 trained on human
benchmarks (Table S2).

During training on the animal benchmarks, we used the

same settings for CTD-CoAM-W32/W48 (Table S2). How-
ever, to keep the aspect ratio for animals, we padded the
cropped individuals to the input resolution of 256×256 (and
the batch size is 16). For training CTD-CoAM-W32 on
COCO [10], we trained for 110 epochs, with an initial learn-
ing rate of 0.02 and a learning rate drop at epochs 70 and
110, respectively.



Hyperparameters CTD-CoAM-W32/48 CTD-TP-H-A6
Optimizer Adam [7] Adam [7]
Base learning rate 0.001 0.0001
Weight decay 0.0001 0.1
Learning rate sched. step [170,200] step [100,150,200,220]
Learning rate drop (γ) 0.1 0.25
Training epochs 210 240
Batch size 96/48 64
Input resolution 256×192 / 384×288 256×192
Rotation 45◦ 45◦

Scale [0.65, 1.35] [0.65, 1.35]
RandomFlip 0.5 0.5

Table S2. Default training settings for conditional top down
models. We apply these hyperparameters and training data set-
tings to a CTD-CoAM-W32.

A.3. Details for CTD with a Conditional Attention
Module

We introduced a new Conditional Attention Module
(CoAM) that is inspired by Fu et al. [4] and contains spa-
tial and channel attention sub-modules, which are defined
as follows.

Position Attention Module.
Given a local feature f , we first feed it into a convolu-

tion layer to obtain F ∈ RC×H×W and embed it linearly
to generate two new features maps K and V (keys and val-
ues) with K,V ∈ RC×H×W . The condition heatmap c ∈
R3×H×W at the corresponding stage is also processed by a
convolution layer to create C ∈ R3×H×W and embedded
linearly into Q (queries) with Q ∈ RC×H×W . We reshape
queries, keys and values to RC×N , where N = H × W
is the number of pixels. A softmax layer is applied after a
matrix multiplication between the transpose of Q and K, to
generate the spatial attention map S ∈ RN×N :

sji =
exp(Qi ·Kj)∑N
i=1 exp(Qi ·Kj)

(1)

where sji measures the impact of condition position i on the
feature position j. Then, we perform a matrix multiplication
between V and the transpose of S and reshape the result
to RC×H×W to obtain the final output P of the position
attention submodule:

Pj =

N∑
i=1

(sjiVi) (2)

The resulting feature from the position attention submodule
has a global contextual view and aggregates the conditional
context according to the spatial attention map.

Channel Attention Module.
Each channel map of high level features can be regarded

as a keypoint-specific response while the condition itself
is a keypoint-specific map. Hence, it is beneficial to learn
the associations between these different semantic represen-
tations.

Different from the position attention submodule, the
channel attention submodule directly calculates the chan-
nel attention map X ∈ RC×C from the original features F
(treated as key and value) and the condition C (processed by
convolution layer to be in RC×H×W and treated as query).
Specifically, we reshape both F and C to RC×N , and then
perform a matrix multiplication between F and the trans-
pose of C, followed by a softmax layer to retain the channel
attention map X ∈ RC×C :

xji =
exp(Ci · Fj)∑C
i=1 exp(Ci · Fj)

(3)

where xji measure the impact of the condition channel i
on the feature channel j. Afterwards, we perform a matrix
multiplication between the transpose of X and F and re-
shape the result to RC×H×W to obtain the final output E of
the channel attention submodule:

Ej =

C∑
i=1

(xjiFi) (4)

The final feature of the channel attention submodule models
the long-range semantic dependencies between conditional
keypoints and feature maps.

To obtain the final output M of CoAM, we perform an
element-wise sum operation between the original feature
map F and the outputs of the respective submodules P and
E:

Mj = Fj + (Pj + Ej) (5)

A.4. Design of the conditional input to CTD

The condition fed to the CTD stage of our BUCTD
framework is created as follows:

With the predictions coming from the first stage, we gen-
erate a conditional heatmap in (c ∈ RH×W×3) by using a
Gaussian distribution with a standard deviation σ.

We tried several designs for this conditional input: (3D)
color heatmap (CM), (1D) gray-scale heatmap (GM), and
K-channel single Gaussian heatmaps (KM). We achieved
+1.3 mAP with CM, +0.9 mAP with GM, vs. KM BUCTD-
CoAM-W32 on CrowdPose.

Therefore, we applied color heatmap as conditions for
all models.

A.5. Details of generative sampling scheme during
conditional training

Similar to PoseFix [11], during training, we synthesized
the pose by using the error statistics described in [14] as
prior information to generate noisy pose as conditional in-
puts. We generated the conditional pose with the four error
types of jitter, inversion, swap and miss. For human bench-
mark, i.e. CrowdPose, we applied the same error probabil-
ities as in PoseFix (which are estimated from COCO and
are likely slightly different [14]; despite this we achieve ex-
cellent results). For animal benchmarks, we utilized the



same error types and tuned the error distribution by run-
ning a few different cases; we ended up using jitter error:
0.15 or 0.2 (depending on keypoint validity), miss error:
0.05 or 0.2 (depending on keypoint validity), inversion er-
ror: 0.03, swap error: 0.04 or 0.1(depending on keypoint
validity). Additionally, we allow swapping keypoints be-
tween individuals that do not have any overlap, to simulate
wrong assemblies in the bottom-up stage.

Our results demonstrate that the CoAM module leads to
improved performance on some animal benchmarks when
applying generative sampling (Table S3). However, the
preNet module underperforms on the SchoolingFish dataset
compared to the baseline results. We further ablate the
error types and find that the performance with fewer er-
ror types on preNet-W48 on the SchoolingFish dataset is
slightly higher than the performance on the models with all
error types. Specifically, when we use two types of errors
(jitter and swap), we achieve 71.7 AP, while using jitter er-
ror only results in 77.0 AP.

From the different results, we observed that the genera-
tive sampling strategy is not as stable as empirical sampling
on small-scale datasets, likely due to different error statis-
tics between human and animal pose estimation methods
(or different body plans). However, combined generative
and empirical sampling could be a great strategy to explore
in the future.

methods Marmosets Sch.Fish Tri-Mouse

BUCTD-preNet-W48 (DLCRNet) 91.6 62.1 98.4
BUCTD-CoAM-W48 (DLCRNet) 91.6 81.9 99.1
BUCTD-preNet-W48 (DLCRNet)σ 90.4 88.7 98.5

Table S3. Results on animal benchmarks with generative sampling
and empirical sampling. σ denotes empirical sampling.

B. Comparisons to MIPNet
In this section, we compare our method with previous

SOTA (MIPNet). based on precision and recall. We find
higher performance on both metrics with BUCTD, also
strong error-correcting capabilities to improve the perfor-
mance of BU models.

Furthermore, to ablate the influence of the number of de-
tections (which vary widely across different BU models),
we only provide the same (amount of) detected bounding
boxes as in MIPNet to our CTD models. We notice that
our method still outperforms MIPNet, independent of the
bottom-up model applied, and with especially large gains
on hard frames (i.e. frames with higher crowdedness level).

B.1. Evaluation on ground-truth bounding boxes

First, to take the detectors completely out of the equa-
tion, we simply evaluated different models on ground truth

bounding boxes (i.e., the same pixel input).
We compare the performance of our BUCTD-CoAM-

W32 model on CrowdPose to HRNet and MIPNet when
evaluated using ground-truth bounding boxes (Table S4).
Note that these models were trained on train and validated
on val (as done in [6]). During training we matched the
conditions to the GT keypoints and then fed it to the CTD
model together with the cropped input image. The same
approach is used during testing. Our method outperforms
the HRNet baseline and improves upon the MIPNet base-
line, that was designed to better handle crowded scenarios.
While MIPNet only achieves small improvements over HR-
Net, our method substantially boosts the AP values, espe-
cially on the hard, highly crowded cases (+ 9.0 AP over
HRNet and + 6.9 AP over MIPNet). This directly corrobo-
rates our choice to provide conditional pose input to boost
performance vs. an index.

Method AP APeasy APmed APhard

HRNet-W32 [17] 70.0 78.8 70.3 61.7
MIPNet-W32 [6] 71.2 78.8 71.5 63.8
BUCTD-CoAM-W32 (Ours) 75.2 81.4 75.3 70.7

Table S4. Our BUCTD model outperforms HRNet and MIPNet on
CrowdPose val (using ground-truth bounding boxes). All models
are trained on input resolutions of 256x192.

B.2. Performance details - precision and recall

To gain better insights into the performance gains of
BUCTD, we computed precision and recall on the Crowd-
Posetest set (Figure S2) . We compared our model (trained
with empirical sampling) to the previous SOTA on Crowd-
Pose: MIPNet. Importantly, we have higher recall and pre-
cision than MIPNet for all BU models. Thus, due to its
design, BUCTD improves the precision and recall for all
BU models we tested.

Figure S2. Comparison of recall and precision curves for different
BU and CTD models vs. MIPNet. CTD boosts both precision
and recall (of BU models), and can thus ”recover” more poorly
predicted persons than MIPNet.



B.3. Robustness to number of detections

Next, we wanted to fairly compare our BUCTD in terms
of the number of detections that the first stage provides, in
order to exclude that simply a higher number of detections,
made by the bottom-up pose detector in comparison to com-
monly used object detectors, would lead to our superior per-
formance.

We hence provided the same number of detections from
the bottom-up models, as provided by the object detector.
Despite this artificial constraint the performance of BUCTD
was still significantly higher than the one of MIPNet [6]
(Figure S3).

Figure S3. Performance of BUCTD when provided with same
amount of detections (65,044) as the object detector of MIP-
Net. When constraining the number of detections we pass from the
bottom-up pose detector (DEKR, CID, PETR) to the CTD model
to the same amount of detections MIPNet receives from the ob-
ject detector on the CrowdPose test set, the BUCTD framework
still significantly outperforms MIPNet on AP and APH (i.e., AP
hard).

C. Computational costs of training BUCTD
There are three components for creating a BUCTD

model (and comparing it to the standard pipeline either BU
or detector + TD). Naturally, simply using a BU model is
more efficient, but we also achieve more accuracy.

In contrast, BU models are more efficient than detectors
(as we show below). Creating and storing the empirical
predictions as well as matching them to ground-truth also
comes with some cost (while one does not have these costs
with generative sampling; however, one might need to es-
timate the error distribution). Training CTD or TD models
is comparable. Furthermore, the inference of TD and CTD
is also comparable (with an advantage for TD). However,
those costs come at the benefit of stronger performance –

depending on the application performance or speed might
be differently relevant.

We compared the parameters and GFLOPs on object de-
tectors, bottom-up models, top-down models, and our meth-
ods (Table S5). Bottom-up models generally have fewer pa-
rameters and GFLOPs than widely-used object detectors.

We further compare the overall training time of object
detectors vs. bottom-up pose detectors. We trained two
commonly used object detectors (i.e., Faster R-CNN [13]
and YOLOv3 [12]) with the default parameter settings from
mmdetection [1] and a DLCRNet [8] as the bottom-up pose
detector on the animal benchmarks. For training on the mar-
mosets datasets, training the FasterRCNN detector with 90
epochs took 26.5 hours (saturated around 60 epochs), and
training the YOLOv3 with 273 epochs took 33 hours (satu-
rated around 258 epochs). However, training the DLCRNet
took only 2.25 hours for 90 epochs. Experiments were per-
formed on a single Titan RTX.

Method #params GFLOPs
FasterRCNN [13] 60.0M 246.0
YOLOv3 [12] 62.0M 65.9
HigherHRnet-W32 [2] 28.6M 47.9
DEKR [5] 28.6M 44.5
CID [16] 29.4M 43.2
PETR [15] 220.5M -
HRNet-W48 [6] 63.6M 19.5
MIPNet-W48 [17] 63.7M 64.5
PoseFix [11] 68.7M 36.6

BUCTD-preNet-W32 28.5M 7.6
BUCTD-TP-H-A6 17.0M 8.4
BUCTD-CoAM-W32 39.1M 8.6
BUCTD-CoAM-W48 115.6M 43.5

Table S5. Number of parameters and GFLOPs on object detectors,
bottom-up models, top-down models and our methods.

D. Success and failure cases

To illustrate the power of our method, we show addi-
tional qualitative results of success (Figure S1) and failure
cases (Figure S4).
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