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A. Multi-stage joint-training strategy
A.1. Image reconstruction

As mentioned in Sec. 3.4 of the main paper, the dis-
crete depth constraint [1, 13, 2, 31] is used for helping TiO-
Depth learn monocular depth estimation at step (1), which
assumes that the depth of each pixel is inversely propor-
tional to a weighted sum of a set of discrete disparities de-
termined by the visual consistency between the input train-
ing stereo images [30]. A left-view reconstructed image
Î la ∈ R3×H×W is obtained with the right-view real image
Ir ∈ R3×H×W and the predicted right-view auxiliary vol-
ume V r

a ∈ RN×H×W under the discrete depth constraint,
where N is the number of the discrete disparity levels and
{H,W} are the height and width of the image. Specifi-
cally, a left-view auxiliary volume V̂ l

a ∈ RN×H×W is firstly
generated by shifting the nth channel of V r

a with the cor-
responding disparity value bn generated with the mirrored
exponential disparity discretization [1]. Then, V̂ l

a is passed
thought a softmax operation along the first dimension to ob-
tain the corresponding probability volume P̂ l

a. Accordingly,
the left-view reconstructed image Î la is obtained by calcu-
lating a weighted sum of the shifted N versions of the right
image Ir with P̂ l

a:

Î l =

N−1∑
n=0

P̂ l
an ⊙ Irn , (1)

where P̂ l
an ∈ R1×H×W is the nth channel of P̂ l

a, ‘⊙’ de-
notes the element-wise multiplication, and Irn is the left-
view image shifted with bn.

The continuous depth constraint [10, 11, 3] is used for
helping TiO-Depth learn binocular depth estimation at step
(2), which assumes that the depth of each pixel is a continu-
ous variable determined by the visual consistency between
the input training stereo images [30]. A left-view image Ĩ ls
is obtained with the right-view real image Ir and the pre-

dicted left-view depth map Dl
s ∈ R1×H×W under the con-

tinuous depth constraint. Specifically, for an arbitrary pixel
coordinate p ∈ R2 in the left-view image, its corresponding
coordinate p′ in the right image could be calculated with
Dl

s:

p′ = p−
[

Bfx
Dl

s(p)
, 0

]⊤
, (2)

where B is the baseline length of the stereo pair and fx is
the horizontal focal length of the camera. Accordingly, the
reconstructed left-view image Ĩ ls is obtained by assigning
the RGB value of the right image pixel p′ to the pixel p of
Ĩ ls.

A.2. Monocular loss

The monocular loss used in step (1) contains a monoc-
ular reconstruction loss Lrec1 and an edge-aware smooth-
ness loss Lsmo1. Specifically, Lrec1 consists a L1 loss term
and a perceptual loss [18] term for measuring the similarity
between the left-view reconstructed image Î la and the left-
view real image I l as done in [1, 31]:

Lrec1 =
∥∥∥Î la − I l

∥∥∥
1
+ β

∑
i=1,2,3

∥∥∥ϕi(Î
l
a)− ϕi(I

l)
∥∥∥
2

,

(3)
where ‘∥ ·∥1’ and ‘∥ ·∥2’ denote the L1 and L2 norms, ϕi(·)
represents the output of ith pooling layer of a pretrained
VGG19 [26], and β = 0.01 is a balance parameter. The
edge-aware smoothness loss Lsmo1 is employed for con-
straining the continuity of the auxiliary disparity map dra as
done in [10, 31, 1, 3]:

Lsmo1 = ∥∂xdra∥1 e
−γ∥∂xI

r∥1 + ∥∂ydra∥1 e
−γ∥∂yI

r∥1 ,
(4)

where ‘∂x’, ‘∂y’ are the differential operators in the hori-
zontal and vertical directions respectively, and γ = 2 is a
parameter for adjusting the degree of edge preservation.



Method PP. Sup. Resolution Abs Rel ↓ Sq Rel ↓ RMSE ↓ logRMSE ↓ A1 ↑ A2 ↑ A3 ↑
DepthHints [28] ✓ S(SGM) 320×1024 0.074 0.364 3.202 0.114 0.936 0.989 0.997
FAL-Net [12] ✓ S 384×1280 0.071 0.281 2.912 0.108 0.943 0.991 0.998
PLADE-Net [13] ✓ S 384×1280 0.066 0.272 2.918 0.104 0.945 0.992 0.998
OCFD-Net [30] ✓ S 384×1280 0.069 0.262 2.785 0.103 0.951 0.993 0.998
SDFA-Net [31] ✓ S 384×1280 0.074 0.228 2.547 0.101 0.956 0.995 0.999
TiO-Depth S 384×1280 0.066 0.229 2.597 0.096 0.961 0.995 0.999
TiO-Depth ✓ S 384×1280 0.065 0.218 2.558 0.094 0.962 0.995 0.999
DepthFormer (2F.) [16] M 320×1024 0.055 0.265 2.723 0.092 0.959 0.992 0.998
ManyDepth (2F.) [29] M 352×1216 0.055 0.305 2.945 0.094 0.963 0.992 0.997
TiO-Depth (Bino.) S 384×1280 0.033 0.078 1.583 0.050 0.996 0.999 1.000

Table A. Quantitative comparison on the improved KITTI Eigen test set. ↓ / ↑ denotes that lower / higher is better. The best and the
second best results are in bold and underlined under each metric. The methods marked with ‘2F.’ predict depths by taking 2 frames
from a monocular video as input, while the methods with ‘Bino.’ predict depths by taking stereo pairs as input. ‘PP.’ means using the
post-processing step. The methods marked with ‘SGM’ are trained with the the depth generated with SGM [17].

Method train test Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ logRMSE ↓ A1 ↑ A2 ↑ A3 ↑
PackNet [15] D D 0.173 7.164 14.363 0.249 0.835 - -
ManyDepth (2F.) [29] D D 0.146 3.258 14.098 - 0.822 - -
DepthFormer (2F.) [16] D D 0.135 2.953 12.477 - 0.836 - -
TiO-Depth K D 0.144 2.664 14.273 0.242 0.808 0.933 0.970
MonoDepth2 [11] C C 0.129 1.569 6.876 0.187 0.849 0.957 0.983
Li et al. [20] C C 0.119 1.290 6.980 0.190 0.846 0.952 0.982
ManyDepth (2F.) [29] C C 0.114 1.193 6.223 0.170 0.875 0.967 0.989
SD-SSMDE [25] C C 0.114 1.017 5.949 0.169 0.870 0.967 0.990
MonoDepth2 [11] K C 0.153 1.785 8.590 0.234 0.774 0.926 0.976
SD-SSMDE [25] K C 0.143 1.635 8.441 0.221 0.789 0.931 0.980
TiO-Depth K C 0.120 1.176 7.157 0.187 0.850 0.958 0.987
TiO-Depth (Bino.) K C 0.066 0.423 4.070 0.106 0.961 0.992 0.997

Table B. Quantitative comparison on DDAD [15] and Cityscapes [4] (Tab. 3 in the main paper). ‘C’, ‘K’, and ‘D’ denote the methods are
trained or tested on the Cityscapes, KITTI and DDAD datasets respectively.

A.3. Details of the training

Since the predicted depth results are not reliable at the
early training epochs, which lack the ability to effectively
guide the following steps, the second and third steps are en-
abled after E1 = 20 and E2 = 30 training epochs respec-
tively. Thus, the multi-stage joint-training strategy contains
three stages, where the training iterations are divided into
one, two and three steps respectively as mentioned in Sec.
3.4 of the main paper. Considering that the second and the
third steps are enabled after E1 and E2 epochs respectively
and different parameters are optimized at these steps, we
use three Adam optimizers [19] at the three steps for train-
ing. The learning rate of each optimizer is set to 10−4 when
the corresponding training step is firstly enabled, and which
is downgraded by half as described in Sec. 4.1 of the main
paper. Since there are several parameters are trained only
at one step (e.g., the parameters in the monocular feature
matching modules), while other parameters are trained at
multiple steps (e.g., the parameters in the decoder block),
we multiply the learning rates of the parameters that have
optimized at the previous steps by 0.1.

B. Dataset and metric
TiO-Depth is trained on the KITTI dataset [9] and evalu-

ated on the KITTI, Cityscapes [4], and DDAD [15] datasets
as mentioned in Sec. 4 of the main paper.

In addition to the Eigen split [7] and the KITTI 2015
stereo benchmark [23] which are employed for training and
testing, an improved Eigen test set [27] comprised of 652
images with high-quality depth labels is also used for eval-
uation. The test set of Cityscapes [4] which contains 1525
stereo pairs with the disparity maps provided by SGM [17]
and the validation set of DDAD which contains 3950 sin-
gle images and the aligned LiDAR depth labels are used for
evaluating the cross-dataset generalization ability of TiO-
Depth,

The following seven metrics are used to evaluate the per-
formances of monocular and binocular depth estimations on
all the datasets:

• Abs Rel: 1
N

∑
i
|D̂i−Dgt

i |
Dgt

i

• Sq Rel: 1
N

∑
i
|D̂i−Dgt

i |2
Dgt

i

• RMSE:

√
1
N

∑
i

∣∣∣D̂i −Dgt
i

∣∣∣2



Input Images EPCDepth [24] SDFA-Net [31] TiO-Depth (Mono.) TiO-Depth (Bino.)

Figure A. Visualization results of EPCDepth [24], SDFA-Net [31] and our TiO-Depth on KITTI. The input stereo pairs are shown in the
first column, where the left-view images are used for monocular depth estimation. The predicted depth maps with the corresponding ‘Abs.
Rel.’ error maps calculated on the improved Eigen test set are shown in the following columns. For the error maps, red indicates larger
error, and blue indicates smaller error as shown in the color bars.

• logRMSE:

√
1
N

∑
i

∣∣∣log (D̂i

)
− log

(
Dgt

i

)∣∣∣2
• Threshold (Aj): % s.t. max

(
D̂i

Dgt
i

,
Dgt

i

D̂i

)
< aj

where {D̂i, D
gt
i } are the predicted depth and the ground-

truth depth at pixel i, and N denotes the total number of
the pixels with the ground truth. In practice, we use aj =
1.25, 1.252, 1.253, which are denoted as A1, A2, and A3 in
all the tables. EPE and D1 metrics are also adopted for the
evaluation of binocular depth estimation as done in [21, 22]:

• EPE: 1
N

∑
i

∣∣∣d̂i − dgti

∣∣∣
• D1: % s.t.

(∣∣∣d̂i − dgti

∣∣∣ > 3
)
∨
(
|d̂i−dgt

i |
dgt
i

> 0.05

)
where {d̂i, dgti } are the predicted disparity and the ground-
truth disparity at pixel i.

For the evaluation on the raw and improved KITTI Eigen
test sets [7, 27], we use the center crop proposed in [8] and
the standard cap of 80m. For the evaluation on the KITTI
2015 training set, all the ground truth disparities are used
for calculating D1 and EPE metrics, while other metrics
are calculated with the cap of 80m as done in [3]. For the
evaluation on the DDAD dataset [15], the cap of 200m is
used, while the input images are resized into the resolu-
tion of 384 × 640 as done in [15]. For the evaluation on
the Cityscapes dataset [4], we use the center crop and the
standard cap of 80m as done in [29, 14, 20], while the in-
put images are cropped and resized into the resolution of
192 × 512 as done in [29]. All the cross-dataset results of
TiO-Depth are calculated after the median scaling [6].



Methods Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ logRMSE ↓ A1 ↑ A2 ↑ A3 ↑ EPE ↓ D1 ↓
w. Cat module (321) 0.069 0.505 3.442 0.123 0.947 0.983 0.992 2.074 15.952
w. Attn module (321) 0.053 0.439 3.214 0.106 0.965 0.987 0.994 1.377 7.421
w. MFM (1) 0.054 0.423 3.211 0.109 0.960 0.986 0.993 1.483 8.784
w. MFM (21) 0.052 0.445 3.268 0.107 0.965 0.987 0.994 1.305 7.077
TIO-Depth 0.051 0.429 3.137 0.105 0.966 0.988 0.994 1.281 6.684
w/o. Lgui 0.053 0.506 3.378 0.108 0.966 0.987 0.993 1.292 6.984
w/o. Lgui, Lcos 0.053 0.522 3.404 0.110 0.965 0.986 0.993 1.326 6.775
w/o. Lgui, Lcos, Mocc 0.054 0.565 3.637 0.121 0.963 0.984 0.992 1.345 7.159

Table C. Binocular depth estimation results on KITTI 2015 training set in the ablation study (Tab. 4 in the main paper). The numbers in
the name of methods mean the indexes of the used modules as shown in Fig. 2 of the main paper. All the results are evaluated after training
30 epochs.

Steps Ldis FB. Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ logRMSE ↓ A1 ↑ A2 ↑ A3 ↑
1 - - 0.088 0.556 4.093 0.173 0.904 0.967 0.984

1+2 - - 0.088 0.557 4.067 0.172 0.906 0.968 0.984
1+2+3 P l

s ✓ 0.086 0.590 4.021 0.169 0.911 0.969 0.985
1+2+3 P l

h ✓ 0.085 0.544 3.919 0.169 0.911 0.969 0.985
1+2+3 P l

h - 0.098 0.695 4.367 0.183 0.892 0.964 0.983

Table D. Monocular depth estimation results predicted by TiO-Depth on the KITTI Eigen test set in the ablation study (Tab. 5 in the main
paper). ’FB.’ denotes using the final branches.

C. Comparative Results

As done in [28, 12, 13, 30, 31], we evaluate TiO-Depth
on the improved KITTI Eigen test set [27] and the cor-
responding results are shown in Tab. A. It can be seen
that TiO-Depth outperforms all the comparative methods in
most cases in both monocular and binocular (multi-frame)
tasks. Additional visualization results are given in Fig. A.
These results further demonstrate the effectiveness of TiO-
Depth as a two-in-one model.

In Tab. B, the monocular and binocular depth estimation
results of TiO-Depth and 6 comparison methods [20, 11, 15,
16, 25, 29] on the DDAD [15] and Cityscapes [4] datasets
under all the seven metrics are given, which demonstrate the
generalization ability of TiO-Depth on the unseen datasets.

D. Ablation Study

We have verified the effectiveness of each key element
in TiO-Depth by conducting ablation studies on the KITTI
dataset [9] in Sec. 4.3 of the main paper. Tab. C shows
the binocular depth estimation results in the ablation study
under all of the nine metrics, which demonstrate the effec-
tiveness of the dual-path decoder and the stereo loss LS on
the binocular task.

The monocular depth estimation results in the ablation
study under all of the seven metrics are shown in Tab. D,
which indicate the effectiveness of the multi-stage joint-
training strategy. Furthermore, the results also prove the
significance of the final branches in the Self-Distilled Fea-
ture Aggregation (SDFA) [31] blocks (as shown in Fig. B(a)
where the raw data path in blue is used as the auxiliary
branch and the distilled branch in red is used as the final

branch) for the monocular task.

To further explore the effect of such switchable branches
on learning more accurate monocular depths, a variant of
TiO-Depth is built by replacing the three SDFA blocks in
the dual-path decoder by the switchable aggregation blocks
shown in Fig. B(b). The switchable aggregation block is
inspired by the deformable convolution [5, 32] and is built
based on the basic decoder block described in Sec. 3.2 of
the main paper. In comparison to the basic decoder block,
it employs two additional 3 × 3 convolutional layers as the
switchable ‘final branches’ to learn the spatial offsets for
the kernels of the convolutional layers in the basic decoder
block. Accordingly, the standard convolutional layers in
the basic block are converted to the deformable convolu-
tions when the final branches are used. We train this vari-
ant with the multi-stage joint-training strategy and conduct
the ablation studies. The corresponding results are shown
in Tab. E. It can be seen that the whole performances of the
variant TiO-Depth are poorer than that of TiO-Depth shown
in Tab. D, mainly because the SDFA blocks could aggre-
gate the features more effectively than the basic decoder
layers. However, using the switchable final branches signif-
icantly improves the performance of the model in compari-
son to that without the final branches. These results further
demonstrate that the potential of TiO-Depth for employing
a more general architecture.

Finally, we conduct the ablation study on the input image
resolution. As seen from Tab. F, TiO-Depth still performs
well under the two low resolutions.



(a)
(b)

Figure B. (a) Architecture of the Self-Distilled Feature Aggregation (SDFA) block cited from [31]. (b) Architecture of the switchable
feature aggregation block inspired by the deformable convolution [5, 32].

Steps Ldis FB. Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ logRMSE ↓ A1 ↑ A2 ↑ A3 ↑
1 - - 0.094 0.579 4.155 0.178 0.896 0.966 0.984

1+2 - - 0.094 0.582 4.165 0.177 0.896 0.966 0.984
1+2+3 P l

h ✓ 0.086 0.551 3.967 0.170 0.907 0.969 0.985
1+2+3 P l

h - 0.103 0.688 4.367 0.181 0.890 0.966 0.984

Table E. Monocular depth estimation results predicted by the variant of TiO-Depth on the KITTI Eigen test set in the ablation study.

References
[1] Juan Luis Gonzalez Bello and Munchurl Kim. Forget about

the lidar: Self-supervised depth estimators with med proba-
bility volumes. Advances in Neural Information Processing
Systems, 33, 2020. 1

[2] Juan Luis Gonzalez Bello and Munchurl Kim. Self-
supervised deep monocular depth estimation with ambiguity
boosting. IEEE TPAMI, 2021. 1

[3] Zhi Chen, Xiaoqing Ye, Wei Yang, Zhenbo Xu, Xiao Tan,
Zhikang Zou, Errui Ding, Xinming Zhang, and Liusheng
Huang. Revealing the reciprocal relations between self-
supervised stereo and monocular depth estimation. In ICCV,
pages 15529–15538, 2021. 1, 3

[4] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 2, 3, 4

[5] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of the IEEE international confer-
ence on computer vision, pages 764–773, 2017. 4, 5

[6] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale con-
volutional architecture. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2650–2658,
2015. 3

[7] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. Advances in neural information processing systems,
27, 2014. 2, 3

[8] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian
Reid. Unsupervised cnn for single view depth estimation:
Geometry to the rescue. In ECCV, pages 740–756, 2016. 3

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, pages 3354–3361, 2012. 2, 4

[10] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In CVPR, pages 270–279, 2017. 1

[11] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In ICCV, pages 3828–3838, 2019. 1, 2, 4

[12] Juan Luis GonzalezBello and Munchurl Kim. Forget about
the lidar: Self-supervised depth estimators with med proba-
bility volumes. Advances in Neural Information Processing
Systems, 33:12626–12637, 2020. 2, 4

[13] Juan Luis GonzalezBello and Munchurl Kim. Plade-net: To-
wards pixel-level accuracy for self-supervised single-view
depth estimation with neural positional encoding and dis-
tilled matting loss. In CVPR, pages 6851–6860, 2021. 1,
2, 4

[14] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia
Angelova. Depth from videos in the wild: Unsupervised
monocular depth learning from unknown cameras. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8977–8986, 2019. 3

[15] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3d packing for self-supervised
monocular depth estimation. In CVPR, pages 2485–2494,
2020. 2, 3, 4

[16] Vitor Guizilini, Rares, Ambrus, , Dian Chen, Sergey Zakharov,
and Adrien Gaidon. Multi-frame self-supervised depth with
transformers. In CVPR, pages 160–170, 2022. 2, 4



Method Resolution Abs Rel↓ Sq Rel↓ RMSE↓ logRMSE↓ A1↑ A2↑ A3↑
TiO-Depth 192×640 0.091 0.625 4.179 0.174 0.902 0.968 0.984
TiO-Depth 320×1024 0.087 0.566 3.970 0.170 0.910 0.969 0.985
TiO-Depth 384×1280 0.085 0.544 3.919 0.169 0.911 0.969 0.985
TiO-Depth (Bino.) 192×640 0.065 0.572 3.767 0.157 0.940 0.971 0.984
TiO-Depth (Bino.) 320×1024 0.064 0.526 3.594 0.153 0.943 0.973 0.985
TiO-Depth (Bino.) 384×1280 0.063 0.523 3.611 0.153 0.943 0.972 0.985

Table F. Depth estimation results with different input image resolutions on the KITTI Eigen test set in the ablation study.

[17] Heiko Hirschmuller. Accurate and efficient stereo processing
by semi-global matching and mutual information. In CVPR,
volume 2, pages 807–814. IEEE, 2005. 2

[18] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, pages 694–711, 2016. 1

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[20] Hanhan Li, Ariel Gordon, Hang Zhao, Vincent Casser, and
Anelia Angelova. Unsupervised monocular depth learning
in dynamic scenes. In Conference on Robot Learning, pages
1908–1917. PMLR, 2021. 2, 3, 4

[21] Liang Liu, Guangyao Zhai, Wenlong Ye, and Yong Liu. Un-
supervised learning of scene flow estimation fusing with lo-
cal rigidity. In IJCAI, pages 876–882, 2019. 3

[22] Pengpeng Liu, Irwin King, Michael R Lyu, and Jia Xu.
Flow2stereo: Effective self-supervised learning of optical
flow and stereo matching. In CVPR, pages 6648–6657, 2020.
3

[23] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint
3d estimation of vehicles and scene flow. In ISPRS Workshop
on Image Sequence Analysis (ISA), 2015. 2

[24] Rui Peng, Ronggang Wang, Yawen Lai, Luyang Tang, and
Yangang Cai. Excavating the potential capacity of self-
supervised monocular depth estimation. In ICCV, pages
15560–15569, 2021. 3

[25] Andra Petrovai and Sergiu Nedevschi. Exploiting pseudo
labels in a self-supervised learning framework for improved
monocular depth estimation. In CVPR, pages 1578–1588,
2022. 2, 4

[26] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

[27] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.
In 2017 international conference on 3D Vision (3DV), pages
11–20, 2017. 2, 3, 4

[28] Jamie Watson, Michael Firman, Gabriel J Brostow, and
Daniyar Turmukhambetov. Self-supervised monocular depth
kints. In ICCV, pages 2162–2171, 2019. 2, 4

[29] Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel
Brostow, and Michael Firman. The temporal opportunist:
Self-supervised multi-frame monocular depth. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1164–1174, 2021. 2, 3, 4

[30] Zhengming Zhou and Qiulei Dong. Learning occlusion-
aware coarse-to-fine depth map for self-supervised monoc-

ular depth estimation. In Proceedings of the 30th ACM In-
ternational Conference on Multimedia, pages 6386—-6395,
2022. 1, 2, 4

[31] Zhengming Zhou and Qiulei Dong. Self-distilled feature ag-
gregation for self-supervised monocular depth estimation. In
ECCV, pages 709–726. Springer, 2022. 1, 2, 3, 4, 5

[32] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 9308–9316, 2019. 4, 5


