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A. UCE Loss

This section elaborates on the derivations from the Soft-
max loss to our UCE loss. To encourage a similarity ma-
trix Ssam-cla that is diagonally dominant in both its rows and
columns.We expect a unified threshold t, such that

cos θ(ij)x,w ≤ t ≤ cos θ(ii)x,w, and

cos θ(ji)x,w ≤ t ≤ cos θ(ii)x,w, ∀ i, j, with j ̸= i. (s1)

If we define the maximum angle between the features
and their positive class proxy as θpos and the minimum angle
between the features and their negative class proxies as θneg,
that is

θpos = max
( N⋃

i=1

{θ(ii)x,w : x(i) ∈ Fi}
)
, (s2)

θneg = min
( N⋃

i=1

⋃
j=1
j ̸=i

{θ(ij)x,w : x(i) ∈ Fi}
)
, (s3)

then, there exists a threshold t satisfying Eq. (s1) if and only
if θpos ≤ θneg, and the unified threshold t = cos θt is valid
for any

θt ∈ [θpos, θneg]. (s4)

According to the analysis of the original softmax loss
in the manuscript, a model M trained using the softmax
loss cannot ensure θpos ≤ θneg. In order to alleviate this
drawback, we design the Unified Cross-Entropy (UCE)
by supposing that there exists a unified threshold t = cos θt
(i.e., θpos ≤ θt ≤ θneg). Starting from the original softmax
loss, we can have
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According to Eqs. (s2) - (s4), we can derive
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We define the UCE loss Luce(X
(i)) as

Luce(X
(i)) = log(1 + e−s cos θ(ii)

x,w +b̃)

+
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where b̃ = s cos θt+log(N −1) is a constant to be learned.

B. Details of MFR Ongoing Testset
For evaluation of face verification performance, we

adopt the ongoing online testing of ICCV-2021 Masked
Face Recognition Challenge (MFR Ongoing)[1]. The MFR
ongoing testing protocol contains not only several popular
testsets, including LFW [3], CFP-FP [6], AgeDB [5], and
IJB-C [4], but also its own testsets such as the Mask set,
Children set, and Multi-Racial set (MR-All, containing 4
different racial faces: African, South Asian, East Asian, and
Caucasian).

The Mask set contains 13.9K positive pairs and 96.9M
negative pairs (6.9K masked images and 13.9K non-masked
images) of 6.9K identities. The Children set contains 157K
images (in total 1.7M positive pairs and 24.7B negative

pairs) of 14K identities. The Multi-Racial sets contain 1.6M
images (in total 4.6M positive pairs and 2.6T negative pairs)
of 242K identities.

C. Training Details
This section describes the detailed hyper-parameters

used in training the face models on each dataset. Follow-
ing [2], we use the customized ResNets as our backbone.
All models are implemented using Pytorch and trained with
the SGD optimizer (5e-4 weight decay and 0.9 momentum).
Following [7, 2], the feature norm s in our UCE loss is fix-
ated at 64 in all experiments.

CASIA-WebFace. The face models (using ResNet-50
as the backbone) are trained for 28 epochs with batch size
512 on the CASIA-WebFace, the learning rate is initialized
to be 0.1 and decreased by a factor of 10 at the 16th and 24th

epoch. In Ablation study, the margin m of Luce-m, Luce-mb-λ
and Luce-mb-r are set to be 0.45. The re-weighting λ of
Luce-mb-λ is set to be 0.6, and sampling rate r of Luce-mb-r
is set to be 0.5. In comparisons between different methods
on MegaFace Challenge 1, we use m=0.4 and λ=0.7 for
Luce-mb-λ.

WebFace4M. We train the models (ResNet-50 as the
backbone) for 20 epochs with batch size 1024, the learning
rate is initialized as 0.1 and a polynomial decay (power=2)
strategy is employed for the learning rate schedule. The fi-
nal margin m in all the three losses (i.e., Luce-m, Luce-mb-λ
and Luce-mb-r) are set to be 0.4. The re-weighting param-
eter λ of Luce-mb-λ is set to be 0.7, and sampling rate r of
Luce-mb-r is set to be 0.4.

Glint360K. We train the models (ResNet-100) for 20
epochs with batch size 1024, the learning rate is initialized
as 0.1 and a polynomial decay (power=2) strategy is em-
ployed for the learning rate schedule. We use m=0.4 and
λ=0.7 for Luce-mb-λ on MegaFace Challenge 1.

WebFace42M. We train the models (ResNet-200) for 20
epochs with a batch size of 4096, we linearly warm up the
learning rate from 0 to 0.4 within the first epoch. We then
employ polynomial decay (power=2) for the rest 19 epochs.
The final margin m of Luce-mb-λ and Luce-mb-r are set to be
0.4. The re-weighting parameter λ of Luce-mb-λ is set to be
0.7, and sampling rate r of Luce-mb-r is set to be 0.4.

D. Parameter Study
Though the proposed UCE loss does not contain any

hyper-parameters, the improved marginal and balanced
UCE losses introduce new parameters. We investigate the
impact of different parameters of the two variants below.

Robustness Against Different Margins. We first study
the impact of different margins of the marginal UCE loss. In
A, when increasing the m from 0.2 to 0.6 with an interval
of 0.05, the average performance of the original marginal



softmax loss and that of the Exclusive Regularization loss
[8] first improves and then rapidly drops. For our marginal
UCE loss, however, the performance is stably increased. To
help clarify the differences between the three methods, we
plot the changes in the average performance with increas-
ing m in the left sub-figure of Fig. A, which suggests that
our UCE loss is more robust and less sensitive to larger mar-
gins, while both the original marginal loss and the Exclusive
Regularization loss [8] are not.

Effects of Different Balance Strategies. We then study
different hyper-parameters for the proposed balanced UCE
loss. We have two alternative ways to balance the proposed
UCE loss, i.e., re-weight all the negative sample-to-class
losses with λ or randomly sample the negative sample-to-
class losses with a ratio of r × 100%. We examine dif-
ferent λ and r from 0.1 to 1.0 in B. It shows that proper
adjustment of these parameters can improve the final per-
formance, while a too-small value can lead to performance
drops. To display the difference more clearly, we also plot
the average results in A (the right sub-figure). It suggests
that, with proper parameters, the balanced UCE loss can
further improve the performance of the marginal UCE loss.
Experimentally, the sampling strategy is better than the re-
weighting strategy when r and λ are small, otherwise, the
re-weighting strategy is better than the sampling strategy.

Method m MR-All IJB-C LFW CFP-FP AgeDB

w/o UCE

0.2 38.22 84.67 99.18 96.25 93.41
0.25 38.48 85.75 99.31 96.75 93.70
0.3 41.66 85.60 99.41 96.87 94.11

0.35 43.34 79.78 99.36 96.60 94.53
0.4 46.66 59.04 99.43 96.82 95.28

0.45 41.80 46.17 99.50 96.91 95.11
0.5 31.76 36.85 99.46 97.15 94.86

0.55 39.05 40.63 99.38 96.92 94.90
0.6 31.67 33.39 99.45 96.84 95.21

w/o UCE

0.2 34.20 84.13 99.33 96.18 93.65

+ Regularization

0.25 37.20 86.39 99.51 96.54 94.13
0.3 37.00 86.29 99.50 96.58 94.38

0.35 44.57 85.84 99.36 96.70 94.61
0.4 45.27 78.21 99.25 97.22 94.98

0.45 45.13 66.46 99.46 96.90 95.06
0.5 45.82 53.10 99.55 96.88 95.25

0.55 43.71 54.46 99.38 96.78 95.13
0.6 35.69 38.73 99.48 96.60 94.80

with UCE

0.2 35.08 86.46 99.35 96.55 94.43
0.25 41.17 87.31 99.41 96.52 94.30
0.3 43.41 88.10 99.43 96.80 94.60

0.35 44.45 88.51 99.48 97.17 94.78
0.4 45.83 88.97 99.50 97.15 95.20

0.45 47.45 88.65 99.56 97.24 94.71
0.5 47.20 88.52 99.55 96.92 95.08

0.55 46.48 88.57 99.50 97.00 94.61
0.6 45.50 88.54 99.45 96.84 94.75

Table A. Impacts of different m.

E. Comparisons between BCE and UCE.
The binary cross entropy (BCE) loss is

Lbce(X
(i)) = log(1 + e−(WT

i x(i)+bi))

Method λ r MR-All IJB-C LFW CFP-FP AgeDB

re-weighting

0.1

1.0

40.87 88.43 99.41 97.31 94.90
0.2 42.42 88.42 99.51 96.97 94.61
0.3 43.45 88.63 99.48 97.30 94.78
0.4 45.67 88.75 99.50 96.97 95.00
0.5 48.75 89.03 99.50 97.28 94.88
0.6 48.54 88.96 99.55 97.47 95.36
0.7 48.30 89.00 99.55 97.14 94.96
0.8 47.41 88.88 99.43 97.12 95.03
0.9 47.38 88.57 99.51 97.02 95.26
1.0 47.45 88.65 99.56 97.24 94.71

sampling 1.0

0.1 44.91 88.03 99.36 97.20 95.03
0.2 45.83 88.58 99.55 97.22 95.03
0.3 48.01 88.47 99.40 97.27 94.95
0.4 47.57 88.99 99.41 96.94 95.15
0.5 48.72 88.94 99.30 97.20 94.95
0.6 48.16 88.75 99.40 97.30 95.28
0.7 47.85 88.61 99.46 97.24 95.21
0.8 48.42 88.35 99.53 96.90 95.25
0.9 46.79 88.92 99.43 97.08 95.26
1.0 47.45 88.65 99.56 97.24 94.71

Table B. Different λ and r with m=0.45.

Figure A. Left: impacts of different m of the compared losses, our
marginal UCE loss stably improves the performance with larger
m. Right: impacts of different λ and r of our balanced UCE loss
on the average results of MFR ongoing testset.
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Though the UCE loss (Eq. (s15)) is similar to BCE loss in
Eq. (s17), there are several key differencs between them.
Firstly, UCE loss is designed from the objective of an ex-
plicit unified threshold t to constrain the similarity of both
positive and negative sample-to-class pairs, while BCE loss
does not have such explicit constraints. Secondly, we de-
rive the UCE loss from softmax loss, and we present the
relationship between the unified threshold t and bias b̃ =
s cos θt + log(N − 1) with a clear mathematical derivation,
we then evaluate that the t is in line with the expectation
of face verification with a qualitative illustration in Fig. 3
(c). Lastly, we systematically compare the UCE loss and
BCE loss on a large benchmark dataset, where we compare
(1) a standard BCE loss assigning respective biases for dif-
ferent classes (in Table C), and (2) a simple modification



m = 0 MR-All IJB-C m = 0.45 MR-All IJB-C
BCE (b = 0) 15.67 0.23 BCE (b = 0) 42.61 79.81

BCE (b) 18.91 69.69 BCE (b) 45.35 83.88
UCE 19.59 74.80 UCE 47.45 88.65

Table C. BCE (w/wo b) achieve lower performance than UCE.

, ID(i):1 , ID(j):1992

Figure B. Image & ID

of BCE loss excluding any biases, implying bias b = 0 (in
Supplementary). The experimental results show continuous
improvements by UCE loss over the two naive variants of
BCE loss.

Table C compares the two different settings of BCE loss,
with 1) respective bs and 2) a constant zero bias b = 0.
The results (trained on CASIA-WebFace, testing on MFR
ongoing) show that our UCE loss outperforms the two BCE
losses with large margins.

F. Discussion
1. An example to explain the motivation.

As depicted in Fig. 2(a), we claimed that for a cor-
rectly classified sample/feature x(i) using a model trained
with sample-to-class loss (such as softmax Lsl), its similar-
ity with its class proxy Wi might be smaller than the simi-
larity between Wi and a sample x(j) from a different iden-
tity. We believe this issue generally exists, even when all
samples are correctly labeled.

Fig. B presents two such images. After training, the
similarity between x(i) and its own proxy Wi is the high-
est (0.3162) among all class proxies, i.e., x(i) is correctly
classified, while there is a negative sample x(j) whose sim-
ilarity with Wi (0.3191) is even higher.

In this example, both the two images are correctly la-
beled. We did statistics on the samples correctly classified
by ResNet50 trained with Lsl in Fig. 4(a), which achieved
99.92% classification accuracy, and found that 7.28% of
these correctly classified samples have similar problems.
2. Comparing the marginal UCE and margin-penalty-
based softmax losses.

The core idea of our UCE Luce is incorporating the uni-
fied threshold t, instead of directly imposing margin-penalty
on the distance/similarity of positive or negative sample
pairs. Built on Luce, the marginal UCE Luce-m introduces
a simple cosine margin, which is similar to CosFace, but

m MR-A IJBC4 IJBC5
CosFace 0.35 43.34 79.78 38.82
CosFace 0.4 46.66 59.04 13.73
CosFace 0.5 31.76 36.85 4.11
ArcFace 0.35 42.88 84.82 61.31
ArcFace 0.4 42.06 76.24 33.26
ArcFace 0.5 45.59 60.31 17.20

Table D. CosFace vs ArcFace under different m.

different from the angular margin in ArcFace. Curricular-
Face and ArcNegFace, on the other hand, adopt more so-
phisticated margin-penalty strategies (angular margin with
adaptive curriculum learning and hard negative mining).

Moreover, as depicted in Fig. 1, the marginal softmax
losses (CosFace, ArcFace, CurricularFace) are imposed on
each individual sample to ensure a margin between the pos-
itive and negative sample-to-class pairs, for this particular
sample only, while our t in UCE aims to achieve such a
separability for all samples.

The UCE is different from other adaptive margin-penalty
softmax loss, in both motivations and methodology and can
thus achieve global separability between all positive and
negative pairs, across all samples.

3. Complexity of UCE’s formula.
Our Luce has two terms for incorporating the unified

threshold t and hence is slightly more complex than softmax
loss, it however only increases N−1 logarithmic operations
(O(N)) and remains efficient.

4. Sensitivity of hyperparameters.
Our marginal and balanced UCE (Luce-m and Luce-mb)

need hyperparameter tuning, and so does the SOTA Cos-
Face, ArcFace, and Partial FC. We have shown that our
Luce-m and Luce-mb are robust to the changes of the margin
in Fig. 3.

5. Margins of ArcFace and CosFace in Table 3.
Firstly, their incorporated margins are different. Arc-

Face uses the angular margin, while CosFace uses the co-
sine margin. Secondly, the performance varies with the val-
ues of m, the results in Table 3 are obtained using the rec-
ommended values (0.35 for CosFace and 0.5 for ArcFace)
from their papers. Table D lists more results for them under
different m, which also suggests that the marginal softmax
losses are sensitive to the changes of m, as shown in Fig.
3(a).

6. Changes of t during training.
As shown in Fig. C, the t first rapidly increased to 0.3108

from the random initial value 0.2061, it then gradually de-
creased to 0.2893 and finally stabilized at 0.2928 after a
fluctuation caused by the changes of learning rate at the
16th epoch.
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