
Unsupervised Domain Adaptive Detection with Network Stability Analysis
– Supplementary Material –

In the supplementary material, we include the detailed procedure to generate different disturbances (Sec. A), the illustra-
tion of instance graph in InsD (Sec. B), adaptation results from C → F with all 8 categories, ablation study on different
disturbance weights of NSA− UDA loss and qualitative results and comparison of NSA-UDA and its baselines (Sec. C).

A. Procedure for Disturbance Generation
In this work, we regard the discrepancy in distribution between two domains as data disturbance and consider the three

types of disturbances, i.e, Heavy and Light Image-level Disturbances (HID and LID) and Instance-level Disturbance (InsD).
HID focuses on the large range of object changes in view and scale with random texture and color variations. LID mainly
represents object variations in small scale and translation, and InsID represents variations of objects of the same class in style,
scale and view. As shown Alg. 1, we utilize common data augmentations to simulate the above disturbances. In Fig. 2, we
show variations of objects under HID, LID and InsD with several examples.

Algorithm 1 Generation Processes about Three Types of Disturbances(i.e, HID, LID and InsID)
Input: Original input image x, SHID, VHID, SLID, DLID.
/* HID Generation */

(1). The texture and color of object are changed by transformation operations, i.e., AdjustGamma, AdjustSaturation,
AdjustContrast, AdjustHue, AdjustSharpness, AdjustBrightness, Identity, Equalize and Solarize.
(2). By randomly sampling the change value mHID from [1, SHID], we further zoom in or out of the input image with it.
Meanwhile, mHID is recorded in THID, which is used to save related parameters during simulating HID.
(3). The resized image is cropped at center position with the same size of the original input image by using CenterCrop
operation. Similarly, coordinate information of the cropped roi is also recorded in THID.
(4). The input image is flipped horizontally at random by using RandomHorizontallyFlip operation. In addition, the
flipping state is also recorded in THID.

/* LID Generation */
(1). The texture and color of object are changed by using some transformation operations, i.e, AdjustGamma, AdjustSatu-
ration, AdjustContrast, AdjustHue, AdjustSharpness and AdjustBrightness.
(2). By randomly sampling the change value mLID from [1, SLID], we further zoom in or out of the input image with it.
Meanwhile, mLID is recorded in TLID, which is used to save related parameters during simulating LID.
(3). By randomly sampling the deviation distance and computing the deviation rate bLID for different feature layers, which
is required to be in [0, DLID], the input image is further shifted, and bLID is recorded in TLID.
(4). The resized image is cropped at center position with the same size of the original input image by using CenterCrop
operation, and the coordinate information of the cropped RoI is also recorded in TLID.

/* InsD Generation */
(1). The texture and color of object are changed by using some transformation operations, i.e, AdjustGamma, AdjustSatu-
ration, AdjustContrast, AdjustHue, AdjustSharpness and AdjustBrightness.

Output: Perturbed images, i.e., xHID, xLID and xInsD, transformation parameters, i.e, THID and TLID.
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Figure 1. Visualization of the process of building instance graph G(V,E,D).

B. Instance Graph
In this work, we build the instance graph from each of internal pixel-level and/or instance-level feature layers. Then, we

further analyze the relationship among nodes, centers of all classes and similar negative nodes collected from background
areas on feature space by using the contrastive loss function. For instance-level feature layers (i.e, RCNN of Faster-RCNN
detector), the undirected graph can be built directly based on proposals. For pixel-level feature layers, we first obtain the pro-
posals of instance-level features by using the slide window method, and choose nodes of objects with the restraint condition
of object areas and proposal nodes of negative samples from background areas with Wt = 1. By the way, the areas of objects
of nodes are required to be in (α1s×α1s, α2s×α2s), where α1 and α2 are constant coefficients (α1 and α2 are empirically
set to 1 and 7), and s is the stride of feature layers.

C. Adaptation Results
As shown in Tab. 1, we report the detection accuracy for each category from C → F . It can be observed that our NSA-

UDA obtain the best mAP score of 52.7%. Meanwhile, our NSA-UDA achieves the best performance on 3 of 8 categories
from C → F .

D. Qualitative results of NSA-UDA
Fig. 3, 4 and 5 provide some qualitative results of our NSA-UDA with three training stages in different adaptations. It

verifies that our NSA-UDA method can achieve state-of-the-art performance on training data of not only single source domain
but also source and target domains in various complex scenarios.
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Table 1. Experiments from C→F using average precision (AP, in %). The best two results are highlighted in red and blue fonts, respectively,
for all state-of-the-art comparison tables.

Method Backbone person rider car truck bus train mbike bicycle mAP
Baseline VGG-16 17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8

MOTR [1] [CVPR’2019] ResNet-50 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1
GPA [8] [CVPR’2020] ResNet-50 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5

CFFA [10] [CVPR’2020] VGG-16 43.2 37.4 52.1 34.7 34.0 46.9 29.9 30.8 38.6
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TIA [9] [CVPR’2022] VGG-16 52.1 38.1 49.7 37.7 34.8 46.3 48.6 31.1 42.3

SDA [11] [arXiv’2021] VGG-16 38.3 47.2 58.8 34.9 57.7 48.3 35.7 42.0 45.2
TDD [3] [CVPR’2022] VGG-16 39.6 47.5 55.7 33.8 47.6 42.1 37.0 41.4 43.1

SIGMA [5] [CVPR’2022] VGG-16 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5
Baseline w. Data Aug. (Ours) VGG-16 39.0 45.8 47.5 21.4 33.9 10.0 34.3 41.8 34.2

NSA-UDA (Ours) VGG-16 50.2 60.1 67.7 37.4 57.4 46.9 47.3 54.3 52.7
Oracle (S1) VGG-16 48.1 53.6 69.0 32.7 54.0 24.9 41.3 49.6 46.7
Oracle (S2) VGG-16 50.1 57.9 70.8 39.6 59.2 48.5 44.4 53.2 53.0
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Figure 2. Visualization of several examples of HID, LID and InsD. The dashed rectangles in the images represent the objects under
disturbances
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Figure 3. Qualitative results of our NSA-UDA with three training stages from Weather adaptation. The first two lines and the last two lines
are respectively from C→F and C→R.
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Figure 4. Qualitative results of our NSA-UDA with three training stages from Cross-Camera adaptation and Synthetic-to-Real adaptation.
The first two lines and the last two lines are respectively from K→C and M→C.
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Figure 5. Qualitative results of our NSA-UDA with three training stages from Small-to-Large adaptation.
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