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1. Visualization of Offset Prediction

The offset prediction as an equivariant vector field is a
main factor in the significant improvement achieved by our
proposed Eq-4D-StOP model. In Fig. 6, we visualize the
offset predictions to show this improvement intuitively. We
can see that the offset vectors predicted by our equivariant
model have more consistent orientations and the end points
are closer to the instance center, thus benefiting the object
clustering and segmentation.

2. 3D Panoptic Segmentation Performance

While the main focus of this paper is 4D panoptic seg-
mentation, the network structure is also compatible with the
3D panoptic segmentation task by skipping the point cloud
aggregation step and only taking a single scan of point cloud
as input. In the 3D panoptic segmentation task, we keep the
model and training configurations the same as in Sec. 5.2,
except for inputting a single frame of point cloud during
training and inference. In Tab. 6, we show the performance
of our model compared with the baseline. The metrics fol-
low the 2D [2, 5] and 3D [4, 1] panoptic segmentation lit-
erature. PQ, the panoptic quality, measures the overall ac-
curacy of panoptic segmentation. PQ = SQ×RQ, where
RQ, the recognition quality, measures the ratio of success-
ful instance segmentation with IoU > 0.5, and SQ mea-
sures the segmentation quality by the average IoU across
the successfully segmented instances. The superscripts Th
and St refer to the things classes and stuff classes, as in the
4D metrics. The semantic segmentation accuracy is mea-
sured by mIoU .

From Tab. 6, we can see that the performance of our Eq-
4D-StOP model improves over the non-equivariant baseline
in all metrics, which shows that the equivariance property
also benefits the 3D panoptic segmentation task. Espe-
cially, PQTh is increased by 4.0 points, showing that the
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Figure 6. Qualitative comparison of the offset vector prediction
(the black line segments) between our method and the baseline.
The predictions from our equivariant model are more consistent
and the endpoints are more concentrated near the instance centers.

instance segmentation of objects is majorly improved, con-
sistent with our observations in Sec. 5.2 in the 4D segmen-
tation.

3. Ablation: Rotation Classification for Offset
Prediction without Equivariant Features

Besides the benefits brought by the equivariance, there
could be another hypothesis for the performance improve-
ment in Eq-4D-StOP: With the rotation classification, it
could be easier to regress the offset vector. It can be ex-
plained as follows. As discussed in Sec. 4.3.2, for a point
x ∈ R3 with arbitrary target offset vector v ∈ R3, its cor-
responding orientation is θ(v) = atan2(vY , vX). Here
we slightly abuse the notation to use θ to represent both
the angle and the corresponding rotation matrix. It should



Method PQ PQ† SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt mIoU

4D-StOP [3] 58.5 64.0 80.3 68.2 62.1 91.0 67.8 56.0 72.5 68.6 64.6
Eq-4D-StOP (ours) 61.2 66.2 83.6 70.8 66.1 91.3 71.9 57.5 78.0 70.0 68.0

Table 6. 3D Panoptic segmentation results on SemanticKITTI validation set.

Method
4D-StOP
(c = 256)

Eq-4D-StOP
(c = 64, n = 4)

4D-StOP w/ R-head
(c = 256, n = 4)

LSTQ 67.1 69.8 66.8

Table 7. Experiment of standard KPConv and proposed prediction
head for equivariant field prediction (R-head) on SemanticKITTI.

not cause ambiguity since all rotations are in SO(2) in this
discussion. The ground truth rotation anchor for vector v
is θi(v) ∈ SO(2)′, where i(v) = argmini ∥θi − θ(v)∥.
Following Eq. (4) and (6), the learning process is to fit
f(x, θi(v)), the prediction at the i(v)’th rotation anchor, to
θ−1
i(v)v. Intuitively speaking, it means that the offset is al-

ways regressed in the local reference frame (rotation an-
chor) closest to the orientation defined by the offset it-
self. The variation of v in its closest local reference frame
is much smaller than v in the global frame. Specifically,
θ(θ−1

i(v)v) = θ−1
i(v)θ(v) ∈ [−π

n ,
π
n ), for SO(2)′ ∼= Cn

with n discretized rotation anchors. In comparison, θ(v) ∈
[−π, π), which implies that the regression of θ−1

i(v)v could
be easier.

We test out this hypothesis by experimenting with a net-
work that uses the non-equivariant KPConv [6] backbone
and predicts the offset with rotation classification. The
ground truth rotation anchors are defined in the same way as
the equivariant models, and the target offset to be regressed
is also θ−1

i(v)v as discussed above. We call this model 4D-
StOP with rotation head (R-head), as in the last column of
Tab. 7, which compares the performance with the baseline
and our equivariant model. The comparison uses a consis-
tent feature map size and rotation anchor size. The experi-
mental results show that 4D-StOP w/ R-head does not out-
perform the baseline, indicating that the performance im-
provement is brought by the equivariant property of the net-
work instead of the smaller variations in the regression tar-
gets.

4. Quotient Representation in SO(2) Causes In-
formation Loss

In Sec. 4.2, we introduce that we use the regular rep-
resentation instead of the quotient representation in our
SO(2) equivariant 4D panoptic segmentation network, be-
cause quotient representations cause information loss for
abelian groups like SO(2). Here is a more detailed expla-
nation.

First, we explain what it means to have a quotient rep-

resentation that does not cause information loss, as is the
case in E2PN [7]. E2PN is a SO(3)-equivariant network
with feature maps in the space F = {f : R3 × S2 → V },
where S2 = SO(3)/SO(2) is the 2D sphere in 3D space,
and also the quotient space of SO(3) with respect to sub-
group SO(2). As a SO(3)-equivariant network, its feature
maps are not defined on SO(3) but only S2, which is why it
is said to use a quotient representation to reduce the feature
map size and thus the computational cost. The reason that
this quotient representation does not cause information loss
is that the group action of SO(3) on S2 (i.e., the 3D rota-
tion of a sphere) is faithful, which is to say the only rotation
in SO(3) that keeps all points on a sphere unchanged is the
identity rotation. It implies that any SO(3) rotation can be
detected from its action on the S2 feature maps, therefore
not losing any information in SO(3).

Put more formally, we denote the group as G, the sub-
group as H , the quotient space as G/H . The group ac-
tions of G on G/H is a group homomorphism ϕ : G →
Aut(G/H). If the group action is faithful, then the ker-
nel of the homomorphism is ker(ϕ) = {e}, only contain-
ing the identity element. By the first isomorphism throrem,
G/ker(ϕ) = G ∼= Im(ϕ). That is to say, ϕ is injective.
Therefore, there exists an inverse map ϕ−1 : Aut(G/H) ⊃
Im(ϕ) → G,ϕ(g) 7→ g. We can determine the group ele-
ment g ∈ G from the automorphism in the quotient space
G/H , thus we say the information of G is fully preserved
in G/H .

However, for SO(2), which is an abelian group, its action
on its quotient space is not faithful. To see this, we still use
the G to denote SO(2) and H to denote a subgroup of G.
An element in the quotient space G/H can be denoted as
gH for some g ∈ G. The group action of G on G/H is
g′ 7→ (gH 7→ g′gH, ∀g ∈ G). Now if we take g′ = h ∈
H , then with the abelian property of G, we have g′gH =
hgH = ghH = gH , meaning that the action of g′ ̸= e on
G/H keeps all elements in G/H unchanged. Therefore, the
group action of SO(2) on its quotient space is not faithful,
and ker(ϕ) = H .

By the first isomorphism throrem, G/ker(ϕ) ∼=
Im(ϕ) ⊂ G/H . From G/H , we can only recover elements
in G/ker(ϕ) = G/H instead of G, therefore the informa-
tion inside an H-coset is lost.

Here we provide a concrete example in the discretized
case. Consider SO(2) discretized as C6, i.e., the set com-
posed of 60-degree rotations. If we take a subgroup C2 (i.e.,
180-degree rotations), then the quotient space is C6/C2 =



C3. From the quotient features C3, we will lost discrimi-
nation among the C2-coset. In other words , any rotation
angle θ and θ + 180◦ corrrespond to the same quotient fea-
ture maps in C3.

Therefore, we use the regular representation instead of
the quotient representation. In other words, to enable Cn-
equivariance, we use a feature map defined on Cn as well.

5. Nearest-Neighbor Upsampling and 1-by-1
Convolution Are Equivariant

Nearest-neighbor upsampling layer For the nearest-
neighbor upsampling layer, denote a coarse-level feature
map as fcoarse ∈ F and a fine-level feature map as ffine ∈
F . The nearest neighbor upsampling layer gives

ffine(x,R) = fcoarse(xnn, R) (10)

where x ∈ Xfine ⊂ R3, in which Xfine is the fine point
cloud. xnn ∈ Xcoarse ⊂ R3, where Xcoarse the coarse
point cloud, and xnn is the nearest neighbor of x in the
coarse point cloud. Since distance is preserved under ro-
tations, the nearest neighbor for Rx in the rotated coarse
point cloud RXcoarse is Rxnn. If fcoarse is an equivariant
feature map, i.e., satisfies Eq. (4), then we have

[Rffine](Rx,R′) = [Rfcoarse](Rxnn, R
′)

= fcoarse(xnn, R
−1R′) = ffine(x,R

−1R′), (11)

which means [ffine] also satisfies Eq. (4), thus is equivari-
ant.

1-by-1 convolution layer A 1-by-1 convolution is a map
W : V → V which operates on f(x,R) for each x and
R individually. Denote an existing equivariant feature map
f1 ∈ F and the feature map after the 1-by-1 feature map
f2 ∈ F , i.e.,

f2(x,R) = W (f1(x,R)) (12)

Then we have

[Rf2](Rx,R′) = W ([Rf1](Rx,R′))

= W (f1(x,R
−1R′)) = f2(x,R

−1R′) (13)

showing that f2 satisfies Eq. (4), therefore is equivariant.
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