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Abstract

Due to the lack of space in the main paper, we provide
more details of the proposed method and experimental re-
sults in the supplementary material. Sec.1 introduces the
details of the proposed method. Sec.2 provides the details
of the encoders used in this work. Lastly, Sec.3 provides
pseudo algorithm of the proposed method. Sec.4 shows
some discussions about our proposed method.

1. Details of the Proposed Method
Tab. 1 shows the architecture of MobileNetV2, ResNet-

50, MiT-B1, and MiT-B2, respectively. We take the collab-
orative learning between MobileNetV2 and MiT-B1 as an
example and present the details of our proposed method.

1.1. Heterogeneous Feature Distillation (HFD)

The first-layer feature FV
1 size of MobileNetV2 is

24×128×128 and the first-stage feature FV
1 size of MiT-B1

is 64×128×128. To match the sizes of features, we utilize
the linear transformations ΓC

1 and ΓV
1 to reshape the sizes

of FC
1 and FV

1 as 64×128×128 and 24×128×128, respec-
tively. Then, we can use the transformed feature to calculate
the HFD loss as follow:

LC
HFD = cos(Attn((F Ĉ

1 )), FV
2 ),

LV
HFD = cos(MLP(F V̂

1 ), FC
2 ),

(1)

where F Ĉ
1 and F V̂

1 is the transformed feature, the shapes of
which are 64×128×128 and 24×128×128, respectively.

1.2. Region-wise Bidirectional Selective Distillation

The last-layer feature FC
l size of MobileNetV2 is

96×64×64 and the last-stage feature FV
l is 512× 16×16.
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To match the sizes of features, we exploit the linear transfor-
mations ΓC

l and ΓV
l to reshape the sizes of FC

1 and FV
1 as

96×16×16 and 96×16×16, respectively. The transformed
features are donated as F Ĉ

l and F V̂
l , separately. It is worth

noting that the shapes of the predictions are 512×512. To
match the sizes of transformed features F Ĉ

l (or F V̂
l )and

predictions PC (or PV ), we divide the prediction map into
16 × 16 size. A 512

16 ×
512
16 sized prediction map PC (or

PV ) at the same location corresponds to one region in F Ĉ
l

(or F V̂
l ). Then we use the sum of cross entropy loss of

512
16 ×

512
16 sized prediction map to decide the transferred

direction between two students’ regions with the same lo-
cation. Finally, the region-wise BSD loss is defined as

LC
R =

1

16× 16− M̂

16∑
ĥ=1

16∑
ŵ=1

(1− m̂(ĥ,ŵ))S(ĥ,ŵ),

LV
R =

1

M̂

16∑
ĥ=1

16∑
ŵ=1

m(ĥ,ŵ)S(ĥ,ŵ),

(2)

where M̂ decides the direction of KD for each region and
calculate the cross-student region-wise similarity matrix
S(ĥ,ŵ) is the similarity matrix (as introduced in main pa-
per).

2. Parameters of Encoder

Tab. 2 shows the parameters of encoder for different
methods. For CNN-based students, we adopt the famous
segmentation architecture DeepLabV3+ with encoders of
MobileNetV2 and ResNet-50; for ViT-based students, we
utilize the lightweight SegFormer with encoders of MiT-B1
and MiT-B2, which have comparable or smaller parameters
with their CNN counterparts, respectively.



3. Algorithm
The pseudo algorithm of the proposed method is shown

in Algorithm. 1.

Algorithm 1 The Proposed framework

1: Input: {X,Y }; max iterations: T
model: f(X, θC), f(X, θV );

2: Initialization: Set θC and θV ;
3: for for t←− 1 to T do
4: Attain the segmentation prediction maps and fea-

ture representations for each student, respectively:(
PC, FC

)
= f

(
X; θC

)
,

(
PV, FV

)
= f

(
X; θV

)
;

5: Compute the pixel-wise segmentation loss for each stu-
dent:
LC

CE = 1
H×W

∑H
h=1

∑W
w=1 CE

(
σ
(
PC

(h,w)

)
, y(h,w)

)
,

LV
CE = 1

H×W

∑H
h=1

∑W
w=1 CE

(
σ
(
PV

(h,w)

)
, y(h,w)

)
;

6: Compute the HFD loss for each student:
LC

HFD = cos(Attn((F Ĉ
1 )), FV

2 ),
LV

HFD = cos(MLP (F V̂
1 ), FC

2 );
7: Compute the region-wise BSD loss for each student:

LC
R = 1

Ĥ×Ŵ−M̂

∑Ĥ
ĥ=1

∑Ŵ
ŵ=1(1− m̂(ĥ,ŵ))S(ĥ,ŵ),

LV
R = 1

M̂

∑Ĥ
ĥ=1

∑Ŵ
ŵ=1 m(ĥ,ŵ)S(ĥ,ŵ);

8: Compute the pixel-wise BSD loss for each student:
LC

BSD = LC
R + αLC

P ,
LV

BSD = LV
R + αLV

P ;
9: Compute the total objective for each student:

LC = LC
CE + βLC

HFD + γLC
BSD,

LV = LC
CE + βLV

HFD + γLV
BSD.

10: Back propagation for LC and LV ;
11: Update the students θC and θV with LC and LV , respec-

tively.
12: end for
13: return θC and θV .
14: End.

4. Discussion
4.1. Intuition of BSD

The design of BSD is one of the critical contributions of
this paper as it facilitates the two students to collaboratively
learn reliable knowledge from each other and the knowl-
edge is transferred bidirectionally. Due to the different per-
formance at different regions between the ViT and CNN
students, we intend to dynamically select reliable knowl-
edge between the two students in the feature space, so as
to benefit each other. However, there is a challenging prob-
lem: ‘how to decide the directions of transferring knowl-
edge fro different regions during training?’ To this end,
we propose to manage the directions of KD via combining
the predictions and GT labels, where we regard the direc-
tions of KD for different regions as a sequential decision
making problem. Consequently, we propose a directional

selective distillation (BSD) for enabling students to learn
collaboratively. As the principle of collaborative learning
requires bidirectional knowledge transfer, BSD should be
“bidirectional” to enable CNNs to learn from ViT while
ViT learns from CNNs. Our key idea is “selective” due to
the considerable model size gap and learning capacity gap
between CNNs and ViT. The reasons causing the gaps are
1): The discrepancies in features and predictions between
CNNs and ViT caused by the distinct computing paradigms
make it challenging to do online KD. 2): These methods
only transfer the knowledge in logit space; however, there
is more reliable and efficient knowledge in the features ex-
tracted by both models. 3) There are considerable model
size gap and learning capacity gap between CNNs and ViT.

4.2. Intuition of HFD

We make students learn the heterogeneous features from
each other in the first-layer feature space and align these
features in the second layer. That is, we input the trans-
formed features into the second layer and then align the out-
puts instead of directly aligning features of the first layer.
This way, it can make both students learn the global and
local features in the first-layer space.

4.3. Selection of Layers

We use the first-layer features as low-layer features of
CNNs and ViT are less distinct and heterogeneous, mak-
ing CNNs and ViT learn from each other more effectively.
Moreover, due to the different computing paradigms and
learning capacities of CNNs and ViT, aligning high-layer
features is less approachable and practical. Lastly, aligning
multiple low-layer features lead to an increase in the com-
putation cost. Tab. 3 in the paper shows the effectiveness of
our proposed method between heterogeneous students with
different performance abilities.

4.4. About MLP or Attn in HFD Module

MLP consisting of convolutional layers extracts the lo-
cal semantic features, and Attn consisting of a self-attention
module extracts the global semantic features. Therefore,
after inputting the local features into Attn or inputting the
global features into MLP, these output features are compa-
rable. As such, we use cosine similarity to measure the sim-
ilarity of these features and enable students to learn from
each other in the low-layer space.

4.5. About Operations in Eq.2

Attn updates the first-layer features of CNNs, while MLP
updates the first-layer features of ViT. However, if we ap-
ply Attn operation in ‘CNNs to ViT” and MLP in “ViT to
CNNs’, Attn operation can optimize the first two layers of



Layer of MobileNetV2 First-layer FC
1 Second-layer FC

2 Third-layer Last-layer FC
l

Output Size 24×128×128 32×64×64 64×64×64 96×64×64

Layer of ResNet-50 First-layer FC
1 Second-layer FC

2 Third-layer Last-layer FC
l

Output Size 256×128×128 512×64×64 1024×32×32 2048×32×32

Stage of MiT-B1 First-stage FV
1 Second-stage FV

2 Third-stage Last-stage FV
l

Output Size 64×128×128 128×64×64 320×32×32 512× 16×16

Stage of MiT-B2 First-stage FV
1 Second-stage FV

2 Third-stage Last-stage FV
l

Output Size 64×128×128 128×64×64 320×32×32 512× 16×16

Table 1: Output size of each layer (stage) of different encoders.

Method Encoder Parameters(M)

DeepLabV3+ MobileNetV2 15.4
SegFormer MiT-B1 13.7

DeepLabV3+ ResNet-50 43.7
SegFormer MiT-B2 27.5

Table 2: The Parameters of methods with different encoder.

ViT while MLP operation can optimize the first two lay-
ers of CNNs. Both approaches can facilitate collaborative
learning between CNNs and ViT but optimizing the first two
layers increases computation cost.

4.6. About ViT-ViT setting

ViT is not absolutely better while CNN still matters;
therefore, we explore to take full advantage of CNN and
ViT while compensating for their limitations. Moreover, in
Tab.4, our method demonstrates superior performance com-
pared to previous studies in ViT-ViT setting.

4.7. Results on ADE-20K:

The effectiveness of our method is further demonstrated
by the results obtained on the more challenging ADE-20K
dataset, as shown in Tab. 4. The results will be included in
the final version.

4.8. Distillation on hybrid network:

We explore the potential of our framework between the
CNN-based (ViT-based) student and hybrid network-based
student MaxViT [1], to further demonstrate its effective-
ness in Tab. 5. The significant improvements +7.59% and
+5.45% underscore the effectiveness and practicality of
employing our proposed methodology within hybrid net-
work architectures.

4.9. About the motivation

As ViT is notoriously impeded by limitations, such as
the lack of certain inductive biases and poor performance

on small-scale datasets; while CNN excels at capturing lo-
cal features although CNN may underperform ViT on large-
scale datasets. Therefore, ViT is not absolutely better while
CNN still matters, and it is promising to take full advan-
tage of CNN and ViT while compensating for their limita-
tions. From this new perspective, prior arts [1,2] adopting
the CNN for an auxiliary purpose, are less optimal and in-
tuitive. So, our motivation is reasonable and novel. Our key
idea is to simultaneously learn compact yet effective CNN-
based and ViT-based models by selecting and exchanging
reliable knowledge between them for semantic segmenta-
tion. Although ‘ViT is shown to have higher upper bounds
than CNN’, we observe in Figs. 1(b) and 4 that ViTs may
exhibit less accurate segmentation results in certain regions
compared to CNNs within the same image. To address this,
we introduce BSD to compensate for students’ weaknesses
in region-wise and pixel-wise levels. We further demon-
strate the effectiveness of our proposed method in collabo-
rative learning between CNN-based (or ViT-based) and hy-
brid network-based students by conducting experiments as
shown in Tab. 5.

4.10. About reliable knowledge in BSD

Here, ‘reliable’ does not indicate ‘regions’, but indicates
better predictions with relatively higher segmentation ac-
curacy (See Fig. 1). Predictions in region RV

1 (RC
2 ) of ViT

(CNN) is more reliable compared with predictions in region
RC

1 (RV
2 ) of CNN (ViT). Then we utilize BSD to enable RC

1

(RV
2 ) to learn from RV

1 (RC
2 ). Finally, we obtain more ac-

curate region predictions R̂C
1 (R̂V

2 ). BSD enables students
to learn collaboratively and guarantees the correctness and
consistency of soft label. Qualitative results are in Tabs. 4,
5, 7, and 9 (in main paper), and visualized results in Fig. 4
specifically highlight the effectiveness of BSD.
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Method MobileNetV2 MiT-B2 ∆ ResNet-50 MiT-B1 ∆

Vanilla 67.54 82.03 0.00 76.05 78.48 0.00
Ours 69.21+1.67 82.27+0.24 +1.91 77.59+1.54 79.56+1.08 +2.62

Table 3: Comparison with the Vanilla methods on the PASCAL VOC 2012 dataset for our CNN-based (MobileNetV2 and ResNet-50) and
ViT-based (MiT-B1 and MiT-B2) students.

Method MiT-B1 MiT-B2 ∆ MobileNet MiT-B1 ∆

Vanilla

C
am

V
id

76.26 77.76 0.00

A
D

E
-2

0K

22.53 40.07 0.00
DML 75.84 77.40 -0.78 22.02 40.12 -0.46
KDCL 76.61 77.55 +0.14 22.16 41.62 +1.18
IFVD 76.43 77.45 -0.14 21.42 40.64 -0.54
Ours 77.89 78.01 +1.88 26.47 42.28 +6.15

Table 4: Comparison on the CamVid for MiT-B2 and MiT-B2 students, and ADE-20K for MobileNetV2 and MiT-B1
students.

Method ResNet-50 MaxViT ∆ MiT-B2 MaxViT ∆

Vanilla 58.12 61.89 0.00 77.76 61.89 0.00
DML 59.07 63.80 +2.86 77.09 60.61 -1.95
KDCL 58.64 61.61 +0.24 77.49 63.26 +1.10
IFVD 59.69 62.01 +1.69 77.08 63.10 +0.53
Ours 62.13 65.47 +7.59 77.96 67.14 +5.45

Table 5: Comparison on the CamVid for ResNet-50 (MiT-B2) and MaxViT students.

Figure 1: CNN and ViT learns collaboratively by exchanging reliable knowledge.


