
Appendix

A. Implementation Details
A.1. Predict Marginal Heatmap

The public source code of M2I [2] is used for predicting
marginal heatmap. Specifically, we train three models for
vehicle, pedestrian and cyclist separately. To encode scene
context, we leverage the context encoder with both vector-
ized and rasterized representations. Please refer to M2I [2]
and its source code for more details.

A.2. Data Preprocessing

Filter Interactive Pairs. Apart from the labeled inter-
active cases in the training set of WOMD, we filter more
interactive pairs with the closest spatial distance [2] dm in
the future:
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where y1 and y2 are the future trajectories of two agents
with T steps. For each training case, we calculate dm for
any pair of agents and iteratively select pair with the small-
est dm over the left agents.

Prune Map with Marginal Heatmap. Given the
marginal heatmap of each predicted agent, we prune the
map limited by the area of top S intentions selected from
heatmap using half circle and half ellipse. Concretely, we
normalize intentions to the corresponding polyline coordi-
nate of target agent, and calculate the distance between each
intention and origin. df denotes the maximum distance over
the intentions at the front of agent while dr is the maximum
distance over the intentions at the rear of agent. If df > dr,
the half circle with radius r = df +30m is used at the front
while the half ellipse with semi-major axis a = r and semi-
minor axis b = dr +20m is used at the rear. If df ≤ dr, the
half circle with radius r = dr+30m is used at the rear while
the half ellipse with semi-major axis a = r and semi-minor
axis b = df + 20m is used at the front. For the interactive
cases, all road points within the local region of any target
agent are reserved for trajectory prediction.

A.3. More Architecture Details

We train a single model for predicting all types of inter-
active pairs (any pairwise combination over vehicle, pedes-
trian and cyclist). Motivated by MTR [1], we use a three-
layer MLP with dimension 256 to encode agent polylines,,
and use a five-layer MLP with dimension 64 to encode road
polylines. Both two types of polylines are further projected
to dimension 256 with another linear layer separately. For
the multi-modal decoder in HFIF (High-level Future In-
tentions Fusion), we use 1D convolution for goal regres-
sion and a three-layer MLP with dimension 256 for tra-
jectory completion. For the multi-modal decoder in LFBF

(Low-level Future Behaviors Fusion), we adopt a three-
layer MLP with dimension 512 for trajectory prediction,
and the weights are not shared across different layers.

A.4. Inference Latency

For the default setting of BiFF, the average inference la-
tency is about 56ms for any case from Waymo interactive
validation set. We measure the inference latency using a
RTX 3090 GPU with standard Pytorch code.

B. Qualitative Results
The visualization results of our proposed method under

complex interactive scenarios on the interactive validation
set of WOMD are presented in Figure 1. The different in-
teractive scenarios are shown in separate rows for clarity. In
the first row, we demonstrate the effectiveness of our model
in handling various types of agents by showcasing the inter-
actions between vehicles and pedestrians. The middle row
presents yielding scenarios among vehicles in complex in-
tersections. Finally, the last row presents interactive merg-
ing scenarios where two agents are competing for the right-
of-way at high speeds. These results illustrate the ability of
our model to accurately predict long-term interactive sce-
narios in diverse and challenging scenarios. We also present
more qualitative results for conflict resolution in Figure 2.
Finally, we demonstrate the failure cases in Figure 3. The
failures are mostly related to the misunderstanding of the
agent’s intention, for example, in the first figure, the blue
agent is predicted to turn left in one of the modalities, then
the model generates a more conservative behavior for red
vehicle to yield the blue one.

C. Notations
To illustrate notations in the paper, Tab. 5 is provided.

D. Limitation and Future Work
We have identified several limitations of our proposed

BiFF approach and outline potential avenues for future re-
search. First, while BiFF demonstrates promising results,
there remains a performance gap between our approach and
SOTA in terms of mean average precision (mAP). We hy-
pothesize that this discrepancy may be attributed to the in-
consistency between the marginal heatmap and BiFF, as
they are trained separately. To address this, one solution
is to train a model that predicts the score of each agent
separately, supervised with soft labels, and then obtain the
joint score by multiplying the scores of all target agents in
each modality. Second, limited by computing resources,
the current version of BiFF is small without sufficient train-
ing data. We anticipate that increasing the amount of train-
ing data and decoder layers will continuously enhance the
performance of BiFF. Third, the proposed approach can be



extended to handle more than two interactive targets with
specifically designed techniques like sparse attention to re-
duce the computation of matrix multiplication.

E. Broader Impact
Regarding addressing real-world challenges for au-

tonomous driving beyond the SOTA performance, we list
our contributions to advance this area. First, from mo-
tivation, the joint trajectory prediction problem addressed
by our BiFF is necessary for safe and comfortable driv-
ing, since a comprehensive understanding of the future tra-
jectory distribution of all agents is more informative than
marginal trajectory prediction. Second, thanks to polyline-
based coordinates, our BiFF is memory-efficient without
sacrificing accuracy, which is important for practical de-
ployment and real-time inference. Third, apart from predic-
tion task, the simulation and planning in self-driving will
benefit from Bi-level Future Fusion by considering predic-
tion as future for agents. Since the predicted trajectories
are more scene-consistent with less unrealistic conflicting,
BiFF is able to generate naturalistic driving behaviors for
simulation and reduce collisions for planning.
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Figure 1. Qualitative results under diverse scenarios on the WOMD interactive validation set. HD map information is shown in light grey.
For clarity, we choose K=3 pairs of predicted scene-compliant trajectories shown in red and blue while the corresponding history track is
shown in a light color. Ground-truth future trajectories are illustrated in green on the top.



Figure 2. More qualitative results for conflict resolution. On the left column, we present the map information with predicted trajectories
(K=6). On the right, we show the same scenario with heatmap representations. Left: Marginal heatmaps. Right: Scene-compliant
assignment scores from different headers of motion decoder. Brightness in red and blue signifies the score of two interacting agents, with
the asterisk denoting the ground truth goal points.



Figure 3. Qualitative analysis for failure cases on the WOMD interactive validation set.



Table 5. Lookup table for notations in the paper.

A number of predicted interactive agents
S number of static intentions (conditional anchors)
D number of hidden feature dimension
K number of predicted scene modalities
T number of predicted future steps
L number of nearest road polylines
NE number of stack layers of transformer encoder with relative positional encoding
NL number of stack layers of LFBF and multi-modal decoder
NH number of stack layers of HFIF
Pij relative positional encoding from polyline j to i
he
i features of polyline i
d the dimension of polyline feature
α scaled dot-product attention
Ni the set of polyline i’s neighbors
γa
k,s assignment scores for a-th agent in k-the modality
LG Goal regression
LT Trajectory regression
y1:T Predicted future trajectory
Ncoll number of collision when calculating Cross Collision Rate


