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Appendix Overview

This supplementary document mainly provides more infor-
mation about our P9D dataset and implementation details of
the baseline methods. Besides, we provide the pseudocode
of CTP and more experimental studies.

A. P9D Dataset.
A.1. Dataset Split.

Figure 1 shows the quantity distribution of each subset
of our P9D. The different subsets have a consistent quantity
distribution across tasks, and this consistent distribution en-
sures the comprehensive and unified evaluation for pretrain-
ing. Different from the training set, the test set (cross-modal
retrieval evaluation) and query set (multi-modal retrieval
evaluation) need to be further filtered by humans. The filter
criterion is that the text describes the image content as ac-
curately as possible while ensuring that the test/query set is
proportional to the training set for the same category.

A.2. Image-Text Examples.

Figure 2 shows some image-text examples. We show
some images of same class and keep one described caption
for simplicity. It shows that real-world web data is noisy and
multi-domain mixing. There are prevalent and complicated
situations in the web image domain, such as complex back-
grounds, amorphous watermarks, irrelevant objects, and oc-
clusion.

B. Details of Baseline Methods.
Because these baseline methods are originally proposed

for continual learning on the image classification task.
Thus, we re-implement them to adapt the setting of vision-
language pretraining. In addition to the replacement of the
main optimization loss, we present the implementation de-
tails of each comparison method as follows:
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Figure 1: The quantity distribution of different task data is
consistent for the four subsets of our P9D dataset.

B.1. Memory-Free methods

EWC [16] is the classical regularization methods. It main-
tains the old model parameters θt−1 and an important ma-
trix Ω with the same scale as the model. EWC builds an
additional regularization loss to remember the old parame-
ters according to the important matrix. Because the model
θt−1 at the last task stores the old knowledge, consolidat-
ing important parameters can fix the knowledge from being
forgotten. The training loss can be formulated as:

LEWC = LV LP +
1

2
λΣkΩk(θt,k − θt−1,k)

2, (1)

where the θt−1,k denotes the k-th parameter after training
last task data Dt−1. Ωk means the important weight of the
k-th parameter and is calculated by the Fisher Information
Matrix (FIM) in the EWC method.

SI [43] considers that the EWC is conducted at the end of
each task and will ignore the optimization dynamics over
the entire training trajectory. Thus, SI online estimates the



importance weight Ωk by its contribution (backward gradi-
ent) to the total loss variation. However, this online strategy
need to backpass the gradient twice for each iteration. In
the re-implement, we store the gradient of each parameter
by retaining the forward graph.

MAS [1] calculate Ωk by a unsupervised way. Specifically,
It accumulates important measures based on the sensitivity
of predictive results (output features) to parameter changes.
In our re-implement, we sum the norm of the visual, textual,
and multi-modal features as the predictive result to calculate
the importance.

RWalk [4] combines the regularization terms of SI [43] and
EWC [16] to integrate their advantages. In each iteration,
Rwalk simultaneously consolidates the parameter by con-
sidering the online importance weight from SI method and
the offline important weight from EWC method.

AFEC [40] proposes to actively forget the old knowledge
that interferes with the learning of new tasks for contin-
ual learning. Specifically, It introduces the extra forward-
step trained model θ⋆t as the expansion and collaboratively
guides the update of the current model with the EWC
method. Similar to EWC, the training loss can be formu-
lated as:

LAFEC = LV LP +
1

2
λΣkΩk(θt,k − θt−1,k)

2

+
1

2
λeΣkΩ

⋆
k(θt,k − θ⋆t,k)

2,

(2)

where θ⋆t is the parameter of forward-step trained model and
λe is the FIM of θ⋆t .

LWF [23] aligns the representations of previous-step and
current models for all new arriving data. We maintain
one reference model whose parameters are copied from the
previous-step trained model and align the image and text
representation of the reference and current model by the
cross-entropy loss for each iteration.

B.2. Memory-Buffer methods

For the memory updating processing, the replay buffer
will delete some old samples and add some new samples
according to the size of the new task data.

ER [5] is a popular sample selection strategy. It uses the
reservoir sampling [38] randomly stores a fixed number of
training samples for each input batch and each sample has
the same probability of being replaced.

Kmeans [5] use the Kmeans clustering to process all sam-
ples of the current task and set the number of clusters to
the number of corresponding replaced samples. Then the
cluster-center samples are chosen to update the buffer.

MoF [32] is first proposed by ICARL [32] and selects sam-
ples that are closest to the feature mean of each class. Be-

cause vision-language pretraining has no class concept, we
choose the samples that are closest to the multi-modal fea-
ture mean of the current task.

ICARL [32] perform knowledge distillation on both buffer
samples and new samples. The sample selection strategy is
Mean-of-Feature (MoF). In our implementation, we com-
bine the LWF term to optimize the current model.

LUCIR [14] proposes to utilize a cosine classifier to avoid
the influence of the biased classifier and encourage similar
feature orientation of the new and previous-step models. In
our implementation, we replace the regular projected lin-
ear layer with the cosine normalizing linear layer. In addi-
tion, we constrain that the similarity of same-modal embed-
ding from new and old models is big as possible. However,
the inter-class distance constraint of the original paper [14]
cannot be re-implemented because there is no class label in
vision-language pretraining.

C. Dataset Comparison.

In Table 1, we present the comparison of our P9D with
popular datasets from the continual learning domain [8] and
multi-modal domain [41]. We observe that traditional con-
tinual learning datasets have a small number of data samples
with limited classes (mostly at the thousand level), and only
for single-target class labeling without detailed text descrip-
tion. In addition, although existing multi-modal datasets
contain a large number of web image-text pairs, their data
are too noisy and mixed to conform to the data split for con-
tinual tasks. In contrast, our P9D contains abundant image-
text pairs to support vision-language pretraining. Besides,
Each task contains rich semantic concepts, and different
generalized semantic domains. It can support the simula-
tion of continual learning environments.

C.1. Class-Incremental Learning Datasets

Oxford Flowers [28], MIT Scenes [30], CUB200-2011
[39], Stanford Cars [17], FGVC-Aircraft [26], VOC Ac-
tions [10], Letters [7], SVHN [27]. Aljundi et al. [2, 1]
propose to use a sequence of 8 highly diverse recognition
tasks as continual tasks. This sequence is composed of 8
different topics, going from flowers, scenes, birds, and cars,
to aircrafts, actions, letters, and digits.

CIFAR10/100 [19] consists of 60,000 32 × 32 color images
in 10 classes, with 6,000 images per class. There are 50,000
training images and 10,000 test images. The CIFAR100
dataset has 100 classes containing 600 images each. There
are 500 training images and 100 testing images per class
and the 100 classes can be grouped into 20 superclasses.

MNIST [20] is a large handwritten digits dataset. It has
60,000 samples as the training set and 10,000 samples as



Dataset Train Samples Categories Modal Objects Continual Task Split URL

Popular Class-Incremental Learning Dataset

Oxford Flowers [28] 2,040 102 image single yes Link
VOC Actions [10] 3,102 11 image single yes Link
MIT Scenes [30] 5,360 67 image single yes Link
CUB200-2011 [39] 5,994 200 image single yes Link
FGVC-Aircraft [26] 6,666 100 image single yes Link
Letters [7] 6,850 52 image single yes Link
Stanford Cars [17] 8,144 196 image single yes Link
SVHN [27] 73,257 10 image single yes Link
CIFAR10 [19] 50,000 10 image single yes Link
CIFAR100 [19] 50,000 100 image single yes Link
MNIST [20] 60,000 10 image single yes Link
Tiny-ImageNet [8] 80,000 200 image single yes Link
ImageNet-100 [34] 130,000 100 image single yes Link
CORe50 [25] 120,000 50 image single yes Link

Popular Multi-Modal Dataset

Flickr30K [42] 29,000 – image-text multi no Link
COCO [24] 113,287 80 image-text multi no Link
Visual Genome [18] 108K – image-text multi no Link
FashionGen [33] 325,536 – image-text multi no Link
SBU [29] 875K – image-text multi no Link
GQA [15] 1M – image-text multi no Link
VQA v2.0 [11] 1.1M – image-text multi no Link
CC3M [36] 3.1M – image-text multi no Link
CC12M [3] 12M – image-text multi no Link
YFCC-100M [37] 100M – image-text multi no Link
LAION-400M [35] 400M – image-text multi no Link

Our: P9D 1,014,599 3,814 image-text multi yes –

Table 1: The overview of datasets about continual learning and vision-language pretraining domains. ‘Categories’ means
the number of classes in the corresponding dataset and ‘–’ means not mentioned. ‘Objects’ means the number of labeled/de-
scribed objects in images. ‘Continual Task Split’ means the dataset contains different data chunks with discrepant semantic
concepts and supports to simulate the continual environment. ‘URL’ means the hyperlink of corresponding dataset websites.

the test set.

Tiny-ImageNet [8] first used in the study of continual
learning by Matthi et al. [8]. This is a subset of 200 classes
from ImageNet [9] and the image size is rescaled to 64 ×
64. Each class contains 500 samples subdivided into train-
ing (80%) and validation (10%), and 50 samples for evalu-
ation.

ImageNet-100 (SubImageNet) [34] is a 100-class random
sample subset of ImageNet. It contains 130,000 images for
training and 5,000 images for testing.

CORe50 [25] is a collection of 50 objects collected in 11
distinct domains, where 8 of them (120,000 samples) are
used for training, and the rest are used as a single test set
(45,000).

C.2. Multi-modal Datasets

Flickr30K [42] is obtained by extending the corpus of Ho-
dosh et al. [13] and the image topic contain everyday scenes
and activities. There are 31,783 images associated with five
manually annotated captions each, and 29,000 images are
used for training.

COCO [24] is built based on MSCOCO dataset [24]. It
consists of 123,287 images and each image is annotated
with 5 captions. There are 113,287 training images, 5000
test images, and 5000 validation images. COCO and
Flickr30K datasets are often used as the retrieval evaluation
dataset for large-scale vision-language pretraining.

Visual Genome [18] is proposed to help to develop of
visual understanding tasks (i.e. image caption and visual

https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/
http://web.mit.edu/torralba/www/indoor.html
http://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
https://ai.stanford.edu/~jkrause/cars/car_dataset.html
http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/c/tiny-imagenet
https://openaccess.thecvf.com/content_CVPR_2019/html/Hou_Learning_a_Unified_Classifier_Incrementally_via_Rebalancing_CVPR_2019_paper.html
https://vlomonaco.github.io/core50/
http://nlp.cs.illinois.edu/
https://cocodataset.org/#home
https://visualgenome.org/
https://fashion-gen.com/
http://www.cs.virginia.edu/~vicente/sbucaptions/
https://cs.stanford.edu/people/dorarad/gqa/
https://visualqa.org/
https://github.com/google-research-datasets/conceptual-captions
https://github.com/google-research-datasets/conceptual-12m
http://projects.dfki.uni-kl.de/yfcc100m/
https://laion.ai/laion-400-open-dataset/


question answering, etc.) by mining the relationships be-
tween objects. The dataset contains more than 108K images
and each image has about 35 objects, 26 attributes, and 21
pairwise relationships.

FashionGen [33] contains 325,536 1360×1360 fashion im-
ages and each image has a paragraph-length caption as the
description. Six different angles are photographed for all
fashion items.

SBU [29] is collected and filtered from Flickr.com. It is
usually used as the subset of vision-language pretraining
[22, 21, 6].

GQA [15] is a balanced dataset with 1.7M samples which
is mainly proposed for visual reasoning and compositional
question answering.

VQA v2.0 [11] is proposed to reduce the language biases
that existed in previous VQA datasets. It consists of around
1.1M image-question pairs and 13M corresponding answers
based on 200K MSCOCO images.

CC3M [36] is a dataset annotated with conceptual captions
and the image-text samples are mainly collected from the
web. It contains about 3.3M image-description pairs.

CC12M [3] is a product of the urgent need for large-scale
data with rapidly developing vision-language pre-training.
The authors of CC3M relax the image-text filters and obtain
the larger dataset CC12M.

YFCC-100M [37] totally contains 100 million media ob-
jects (99.2 million photos, 0.8 million videos) collected
from Flickr.com.

LAION-400M [35] is filtered using pre-trained CLIP [31]
and contains 400 million image-text pairs.

D. Algorithm
The Alg. 1 shows the training pipeline of our CTP in the

task data Dt ∈ {D1,D2, ...,DT }.

E. More Experiments.
E.1. Momentum Setting.

For the first task (t = 0), There is no previous-step model
and the current model has not adapted to the product do-
main. Thus, the momentum m of the first task is set to
0.995, and we keep it the same for all ablation studies. Be-
cause we find that the training loss oscillates and fails to
converge if m is 0.9 in the first task.

For the following tasks, we set m as 0.9 and we also do
the parameter-sensitive study about m. The results of Table
2 show the training on the {1, 2, .., T} task is not sensitive
to the setting of compatible momentum m. We suspect this
is due to the fact that the model accepts parameters from

Method TR@1 IR@1 Rm mAP

only θt−1 41.95 42.23 63.57 62.06
only θt 40.41 40.34 62.32 62.32
m=0.7 43.64 43.04 64.83 62.95
m=0.8 43.68 43.11 64.74 62.36
m=0.9 43.43 43.39 64.87 62.64
m=0.99 43.50 43.01 64.75 62.23
m=0.995 44.27 42.23 65.04 61.63

Table 2: The results of momentum selection experiment.

both the previous-step and current models and is less prone
to biased updates. In addition to the main vision-language
pretraining loss, the compatible momentum contrastive loss
is an auxiliary loss for continual learning. Thus, the model
is more robust to momentum parameter selection and does
not easily collapse [12].

E.2. Reverse Task Order.

In the main text, all experiments are conducted in the
default task order. To study the impact of task order on the
performance ranking, we supplement a check experiment
with the reversed task order 1. The Table 3 shows the results
of all baselines and our method in the reversed task order.

The result shows that although there are some changes
in the ranking of some methods with similar performance,
the overall performance ranking is still consistent with the
performance ranking of default task order. Additionally, our
method CTP exhibits superior performance in both contin-
ual learning scenarios (Memory-Free and Memory-Buffer),
even when the order of tasks is changed. It indicates that
the task order can affect the performance value of final re-
sult but not the performance ranking of our method. Our
method consistently outperforms in different task order set-
tings.

F. License
Our P9D dataset is released under CC BY-NC-SA 4.0 li-

cense and can freely be used for non-commercial purposes.
The collection of data has obtained permission from the rel-
evant websites. Once a conflict of interest, our group re-
serves all the rights for the final explanation.
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# F, M, R: training, momentum, and reference (previous-task) model
# m, t, q_v, q_t: momentum, temperature, visual and textual queues

M.params, R.params = F.params, F.params # initialize momentum and reference model
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[20] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[21] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for uni-
fied vision-language understanding and generation. In In-
ternational Conference on Machine Learning, pages 12888–
12900. PMLR, 2022.

[22] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare,
Shafiq Joty, Caiming Xiong, and Steven Chu Hong Hoi.
Align before fuse: Vision and language representation learn-
ing with momentum distillation. 2021.

[23] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(12):2935–2947, 2017.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014.

[25] Vincenzo Lomonaco and Davide Maltoni. Core50: a new
dataset and benchmark for continuous object recognition. In
Conference on Robot Learning, pages 17–26. PMLR, 2017.

[26] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[27] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011.

[28] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722–729. IEEE, 2008.

[29] Vicente Ordonez, Girish Kulkarni, and Tamara Berg.
Im2text: Describing images using 1 million captioned pho-
tographs. Advances in neural information processing sys-
tems, 24, 2011.

[30] Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In 2009 IEEE conference on computer vision and
pattern recognition, pages 413–420. IEEE, 2009.

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning



transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021.

[32] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, pages
2001–2010, 2017.

[33] Negar Rostamzadeh, Seyedarian Hosseini, Thomas Boquet,
Wojciech Stokowiec, Ying Zhang, Christian Jauvin, and
Chris Pal. Fashion-gen: The generative fashion dataset and
challenge. arXiv preprint arXiv:1806.08317, 2018.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115:211–252, 2015.

[35] Christoph Schuhmann, Richard Vencu, Romain Beaumont,
Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo
Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m:
Open dataset of clip-filtered 400 million image-text pairs.
arXiv preprint arXiv:2111.02114, 2021.

[36] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In Pro-
ceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
2556–2565, 2018.

[37] Bart Thomee, David A Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and
Li-Jia Li. Yfcc100m: The new data in multimedia research.
Communications of the ACM, 59(2):64–73, 2016.

[38] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 1985.

[39] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

[40] Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li,
Chenglong Bao, Kaisheng Ma, Jun Zhu, and Yi Zhong.
Afec: Active forgetting of negative transfer in continual
learning. Advances in Neural Information Processing Sys-
tems, 34:22379–22391, 2021.

[41] Xiao Wang, Guangyao Chen, Guangwu Qian, Pengcheng
Gao, Xiao-Yong Wei, Yaowei Wang, Yonghong Tian, and
Wen Gao. Large-scale multi-modal pre-trained models: A
comprehensive survey. arXiv preprint arXiv:2302.10035,
2023.

[42] Peter Young, Alice Lai, Micah Hodosh, and Julia Hocken-
maier. From image descriptions to visual denotations: New
similarity metrics for semantic inference over event descrip-
tions. Transactions of the Association for Computational
Linguistics, 2:67–78, 2014.

[43] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In International
conference on machine learning, pages 3987–3995. PMLR,
2017.



KAMJOVE T-57 

thermal thermostatic 

electric kettle 304 

stainless steel tea art 

special boiling water 

teapot

Finance office solar 

real person voice 12 

big keystroke 

calculator

Summer sun-shading 

fashion women's neck 

protection scarf/ 

veil/mask

Nuts and preserved 

fruit assorted snacks 

original 2 cans

SMACO CROSS 

men's business travel 

leisure computer bag 

backpack

Velbon EX-MACRO 

tripod set, MINI 

tripod, SLR camera 

tripod

KAMJOVE T-57 

thermal thermostatic 

electric kettle 304 

stainless steel tea art 

special boiling water 

teapot

Finance office solar 

real person voice 12 

big keystroke 

calculator

Summer sun-shading 

fashion women's neck 

protection scarf/ 

veil/mask

Nuts and preserved 

fruit assorted snacks 

original 2 cans

SMACO CROSS 

men's business travel 

leisure computer bag 

backpack

Velbon EX-MACRO 

tripod set, MINI 

tripod, SLR camera 

tripod

Figure 2: Some examples of our dataset. The first and second rows are the corresponding image-text pair. For simplicity, the
rest rows show the images from the same class.


