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video ID distance camera motion background lighting
01 near horizontal simple bright
02 medium horizontal simple bright
03 near horizontal simple dim
04 medium horizontal busy bright
05 far horizontal busy bright
06 medium vertical busy bright
07 medium combined busy bright
08 near horizontal busy dim
09 medium horizontal busy dim
10 far horizontal busy dim

Table S1: Different settings of video condition variables for 10
videos of each main object.

A. Additional details for data collection
Given 4 variables including object distance, camera mo-

tion, background complexity, and lighting, participants are
instructed to collect 10 videos of each main object accord-
ing to 10 predefined configurations, which is presented in
Table S1. Figure S1 shows representative frames of these
10 videos featuring one main object - pressure cooker.

Moreover, we attach the full hierarchical structure of the
object category taxonomy in Object Taxonomy.pdf,
a 7-layer tree structure with a total of 638 leaf nodes.

B. Additional details for data annotation
We demonstrate the annotation tools for our multi-stage

annotation process in Figure S2. Both tools have video
player as the back end. We enqueue all 10 videos of the
same main object into a single job to ensure label consis-
tency.

For stage 1 (category discovery) and stage 2 (exhaustive
instance labeling), we use a per-frame object bounding box
interface (Figure S2a with some panels on the right for ad-
ditional information. Annotators are asked to label a track
for each identified instance across the frames by drawing

loss weight val
index positive negative AP AP50 AP75

✗ ✓ ✗ 12.9 25.3 11.7
✗ ✓ ✓ 13.6+0.7 27.2+1.9 12.1+0.4

✓ ✓ ✗ 17.4+4.5 31.4+6.1 17.1+5.4

✓ ✓ ✓ 18.7+5.8 35.0+9.7 17.7+6.0

Table S2: Ablation study on the training losses of TA-IDet. We
train TA-IDet with different combinations of losses and report the
performance on the EgoObjects val split. Backbone is ResNet-
50.

bounding boxes and assigning them consistent category la-
bel and instance ID. Annotators can consult the “main ob-
ject category” panel and the “statistics” panel for the num-
ber of annotated categories and number of instances for
each category in the current frame. Annotators can also
quickly jump to other frames of the track of an instance by
navigating through the “Objects” panel.

For stage 3 (negative category verification), we use a per-
frame attribute classification interface (Figure S2b). On the
right panel there is a list of categories with check boxes. An-
notators are asked to check for each category whether there
is any instance of that category in the image. Categories not
ticked are verified negative categories for the image.

Figure S1 shows representative annotations of both the
main object and the surrounding secondary objects.

C. Ablation studies on TA-IDet
At model training, we can compute three losses: positive

loss, index loss, and negative loss. The positive loss is the
instance detection loss in the positive image, which contains
the same object instance in a different view as in the index
image. The index loss is the instance detection loss in the
index image. The supervision signal is the model should
be able to localize and recognize the same object instance
in the original index image. The negative loss refers to the
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Figure S1: EgoObjects data visualization. We show video frames of objects caputred from the first-person viewpoint under 10 conditions
as in Table S1. Multiple objects are annotated with both category labels and instance IDs. In each row we visualize the annotations of
both the main object (green box) and the secondary objects (pink box) in on video under one set of condition variables. For clarity, we
use shorthand notations: D – Distance, B – Background, L – Lighting, M – Camera Motion. We omit category labels and instance IDs for
clarity. Best viewed digitally.

classification loss in the negative image. The negative im-
age does not contain the same object instance in the index
image. Regardless of what object bounding box is predicted
by the instance localization module, the object confidence
score is minimized. We study the effects of the index loss
and the negative loss by setting their loss weights to zero
and compare with model trained with all the losses. In Ta-
ble S2, we confirm the highest accuracy is achieved when
all three losses are used.

Additionally, we study the effects of different T cls fea-
ture resolutions S×S in Table S3. We find S = 5 produces
the best accuracy.

val
S AP AP50 AP75
1 11.3 20.4 11.3
3 18.5 34.6 17.6
5 18.7 35.0 17.7
7 18.3 34.3 17.4

Table S3: Ablation study on the T cls feature resolution of TA-
IDet. We train TA-IDet with different T cls feature resolution S and
report the performance on the EgoObjects val split. Backbone is
ResNet-50.



(a) Annotation UI for stage 1&2. (b) Annotation UI for stage 3.

Figure S2: Annotation tools for multi-stage process. Stage 1&2 is done in a per-frame object bounding box interface (left). Stage 3 is
done in a per-frame attribute verification interface (right).
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Figure S3: Architecture of target-agnostic instance detector.
Top: in target registration, target embeddings are generated from
SFNet [13]. Bottom: during target detection, the model gener-
ates region proposals and their corresponding query embeddings,
which are cross-matched with target embeddings via cosine simi-
larity.

D. Implementation details of target-agnostic
instance detector

We propose a simple baseline approach RPN+SFNet as
the target-agnostic instance detector. It consists of a Region
Proposal Network (RPN) [11] for object localization and a
SFNet model [13], commonly used in metric learning, for
object classification. It supports two modes, namely target
registration and target detection, see Figure S3.
Target registration. To register a new target instance, we
crop the instance out from the reference image and resize

the crop to a fixed size (112×112). Then a 512-dimensional
embedding is extracted by passing the crop through the
SFNet and added to an index of target object embeddings. If
several reference images per target are provided, the target
embedding is averaged.
Target detection. At detection time, we feed the query
image into RPN to generate several instance proposals ag-
nostic to the targets in the index. Each object proposal is
cropped from the query image and also resized to 112×112.
Then we use the same SFNet as in target registration to ex-
tract 512-dimensional query embedding for each proposal.
All the query embeddings are matched against all the target
embeddings in the index by computing the cosine similar-
ity. We pick the target instance in the index with the highest
cosine similarity as the matched one for each proposal. We
also apply a threshold to the matching score for rejecting
low confident matches.
Model training. During training, the RPN is trained on
the train split with all the object bounding boxes in a
instance-agnostic way. For the SFNet, we build a classifica-
tion dataset by pre-cropping all the instances from train
images and assign them labels as the instance IDs, so that
each instance has several samples of multiple views. The
SFNet model is trained on this classification dataset with
the SphereFace2 [13] loss, which encourages small dis-
tances between embeddings of multiple views for the same
instance and large distances for embeddings of different in-
stances. SphereFace2 is the state-of-the-art deep face recog-
nition method. It constructs a novel binary classification
framework to align the training objective with open-set ver-
ification, outperforming other metric learning losses on rec-
ognizing unseen objects. We follow the best practices of



splits #train img #val img #test img #train inst #eval instsc #eval instuc
Unified 79K 5.7K 29.5K 9.6K 4.1K 25
InstDet 104K 2.5K 7.8K 12.2K 1346 131

Table S4: Comparison between the new InstDet splits and Uni-
fied splits. Eval instsc and eval instuc mean instances in the evalu-
ation set with seen categories and unseen categories respectively.
InstDet splits have more instances with unseen categories for bet-
ter understanding the challenges in instance detection.

[13] and adopt its hyperparameters in our model training.

E. Dataset challenges

We present several qualitative results of instance-level
detection in Figure S4 and category-level detection in Fig-
ure S5. EgoObjects is challenging.

For instance-level detection, one dominant challenge is
the massive number of instances. An ideal instance detec-
tor should be able to output high confidence score for each
target while suppressing the confidence scores of other tar-
gets. But we observed the prediction of multiple instances
with high confidence on a single object, even from the best
TA-IDet-R101 model.

For category-level detection, challenges mainly come
from the diverse capture conditions like far distance, clut-
tered background, dim lighting, extreme view angles, etc.

F. New splits for instance detection with
seen/unseen categories

In the benchmark tasks of the main text (Section 4),
we designed a set of data splits for benchmarking both
category-level detection and instance-level detection uni-
formly, which maximizes the category overlap for training
and testing, resulting in only 25 instances in the evaluation
with unseen categories. We refer to this set of splits as Uni-
fied splits.

To further study the challenges in generalizing instance
detection models to instances with unseen categories, we
created a new set of data splits, named InstDet splits, to
have more instances with unseen categories.

For the InstDet splits, we also divide the dataset into 4
subsets: train/target/val/test. The train split
contains 12.2k instances with a total of 543k annotations
from 104k images. The target, val, test splits share
the remaining 1.5k instances which do not appear in the
train images, and their categories can also be unseen dur-
ing training. Among those 131 instances have unseen cat-
egories. In the target split, there is a single reference
image and one annotation for each instance. The val and
test splits have 2.5K and 7.8K images respectively. We
compare the new InstDet splits with Unified splits in Table
S4.

val test
backbone method AP AP50 AP50se AP50un AP AP50 AP50se AP50un

R50 RPN+SFNet 17.9 29.7 29.8 28.9 16.4 26.9 27.2 24.3
TA-IDet 18.4 35.0 35.3 31.3 19.6 37.1 37.4 33.6

R101 RPN+SFNet 18.5 30.6 30.9 27.6 16.9 27.4 27.7 24.4
TA-IDet 23.3 41.3 42.0 35.3 23.5 41.6 42.3 34.7

Table S5: Instance-level detection benchmarking results on the
InstDet splits of EgoObjects. AP50se and AP50un are computed
for instances with categories seen and unseen during training. The
proposed TA-IDet model significantly outperforms the baseline
RPN+SFNet approach.

Table S5 reports the results. There are clear gaps be-
tween APse and APun on both val and test splits, re-
flecting the challenges in generalizing the models to unseen
categories. Models with R101 backbone tend to have larger
gaps compared to models with R50 backbone, indicating
the trend of overfitting to seen categories. Especially for
RPN+SFNet baseline, the larger backbone does not bring
as much gain on AP50un as the TA-IDet approach. On the
other hand, TA-IDet robustly outperforms RPN+SFNet on
AP50un in all the settings, indicating its superiority of gen-
eralizing to instances with unseen categories.

G. Discussions on CL benchmarks

G.1. CL instance detection.

The continual learning of the instance-level object de-
tection is an under-explored area. The top submissions basi-
cally follow the similar strategy of applying continual learn-
ing techniques to a base category-level object detector and
treating each instance as an individual category. For the
base detector, both single-stage and two-stage detectors are
applicable. The rank-1 team and the rank-3 team are using
single-stage detectors (VarifocalNet [14] and FCOS [12])
while the rank-2 team is using two-stage detector (Faster
R-CNN [11]). And the detectors are pretrained on either
COCO [9] or LVIS [6] which are not the major factor of
performance. For the network architecture, ResNet [7] and
its variants [4] are still the dominating backbones. One key
factor contributing to the performance is the replay buffer.
All submissions observe that the use of full replay buffer
is necessary for high performance. But they adopt dif-
ferent sampling strategies for filling the buffer. Specifi-
cally, rank-1 team samples an experience-balanced buffer,
whereas rank-2 team and rank-3 team uses video-balanced
buffer and instance-balanced buffer respectively. Distilla-
tion techniques are also widely used by rank-1 and rank-3
teams. However, these submissions still treat the instance
detection as a close-set problem where the number of in-
stances are fixed. This limits their adoption for real-world
applications where the number of instances can scale up
continuously.



ground truth prediction

Figure S4: Visualization of ground truths (left) and predictions (right) for instance-level detection. Predictions are produced from a
TA-IDet-R101 model on the val split. The labels on top of boxes contain instance IDs. Best viewed digitally.

G.2. CL category detection.

There are several interesting observations towards the
top submissions. First, when dealing with the catastrophic
forgetting, both the rank-1 and rank-3 teams adopted a uni-
form sampling strategy to cache data from previous tasks,
with the difference in that the former approach samples his-
tory data in a video-wise manner while the latter did so on
a frame basis. Unlike these two teams, the rank-2 team pro-
poses to follow a “Minority Replay” strategy in which they
sort and emphasis on selecting and buffering data from rare
classes. In addition to replay buffer, the rank-1 team pro-
poses to distill information from a teacher model trained in
previous tasks to the model for the current task. However,

these top submissions made limited changes to the detec-
tor architecture. The rank-1 team and rank-3 team directly
adopt the VarifocalNet [14] and Faster R-CNN [11], respec-
tively. The rank-2 team proposed to train a separate detec-
tion head for each experience, leading to a multi-head Faster
R-CNN. This shows the potential of designing architectures
tailored to the CL tasks. But the multi-head solution is not
scalable. Therefore, there is still huge room for innovative
ideas in this field.

H. Video samples

We provide a group of 10 videos featuring the main ob-
ject “soccer ball” in folder samples.



ground truth prediction

Figure S5: Visualization of ground truths (left) and predictions (right) for category-level detection. Predictions are produced from a
FasterRCNN-R101 model on the val split. Best viewed digitally.

I. Predict 3D geometry on EgoObjects videos

In this section, to demonstrate the potential of creating
a 3D dataset from EgoObjects using a fully/semi-automatic
pipeline, we leverage the latest development in neural scene
representations to predict 3D geometry labels on EgoOb-
jects videos [10, 2]. We predict both the 3D point clouds
and meshes on several example videos from EgoObjects
(see videos under /3d directory). To create the inputs
for NeRF training, we sample video frames at 1 FPS and
use NeRFacto [1] to train one model for each video. We
render outputs at 15 FPS to generate all videos. Taking

coffeecup.mp4 as an example, from left to right we
present the rendered RGB frames, the estimated depth map,
the predicted point clouds, and finally the predicted meshes
(sample frames are presented in Fig. S6). Meshes are con-
structed from point clouds using Poisson surface recon-
struction [8]. Given the 2D bounding box annotations and
the predicted 3D point clouds and meshes, we can easily
intersect the two to produce 3D geometry for specific ob-
jects, which could potentially be used to train 3D bounding
box detectors (e.g., CubeRCNN [3]) and 3D mesh predic-
tors (e.g., MeshRCNN [5]).



Rendered RGB frames Predicted depth

Predicted point clouds Predicted mesh

Figure S6: Predict 3D geometry on EgoObjects videos. We show
sample frames from the video of 3d/coffeecup.mp4.
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