
Supplementary Material

Overview
The supplementary material is organized as follows.

• In Section A, we present the detailed derivation of the optimization algorithm of FT-SAM.

• In Section B, we introduce the details of the datasets, the implementation details of state-of-the-art (SOTA) attacks,
SOTA defenses, and FT-SAM.

• In Section C, we display the defense results in comparison to SOTA defenses on different datasets and networks.

• In Section D, we show the defense effect of FT-SAM under different poisoning ratios compared to SOTA defenses.

• In Section E, we provide ablation study of the effectiveness of Tw in FT-SAM.

• In Section F, we exhibit visualization analysis of the defense performance.

A. More Algorithmic Details on The Proposed Method
We provide a detailed derivation of the optimization problem in Section 3 of the main script here. The constraint optimization

problem is defined as follows:
min
w

max
ϵ∈S

L(w + ϵ), (1)

where L(w + ϵ) = E(x,y)∈Dbenign
[ℓ(fw+ϵ(x),y)] with cross-entropy loss ℓ, S = {ϵ : ∥T−1

w ϵ∥2 ≤ ρ}, ρ > 0 is the
hyper-parameter for the budget of weight perturbation, and Tw is the diagonal matrix.

Optimization. The optimization is inspired by [8]. Problem (1) can be efficiently solved by alternatively updating w and ϵ,
as follows:
Inner Maximization: Given model weight wt, the weight perturbation ϵ could be updated by solving the following sub-
problem:

max
ϵ∈S

L(wt + ϵ). (2)

Define ϵ̃ = T−1
w ϵ. According to first-order Taylor expansion, the approximation of the solution to Problem (2) is

ϵ̃t+1 = arg max
∥ϵ̃∥2≤ρ

L(wt +Twt ϵ̃)

≈ argmax
ϵ∈S

L(wt) + ϵ̃⊤Twt
∇wL(wt)

= argmax
ϵ∈S

ϵ̃⊤Twt
∇wL(wt)

= ρ
Twt

∇wL(wt)

∥Twt
∇wL(wt)∥2

.

(3)

Thus the inner problem can be solved as:

ϵt+1 = Twt
ϵ̃t+1 = ρ

T2
wt

∇wL(wt)

∥Twt
∇wL(wt)∥2

. (4)



Outer Minimization: Given ϵt+1, the model weight w can be updated by solving the following sub-problem:

min
w

L(w + ϵt+1), (5)

which can be optimized by stochastic gradient descent, i.e., wt+1 = wt − η∇wL(wt + ϵt+1) where η is the learning rate.

B. More Implementation Details
Datasets. We evaluate our method on CIFAR-10 [7], Tiny ImageNet [9], and GTSRB [20] following BackdoorBench [23].
For details, CIFAR-10 contains 60,000 images from 10 classes, with 5000 images per class for training and 1000 images per
class for testing. Each image has a size of 32× 32. Tiny ImageNet is a subset of ImageNet, which contains 100,000 training
samples and 10,000 testing samples over 200 classes. Each image has a size of 64× 64. GTSRB contains 39209 and 12630
images for training and testing from 43 classes. Each image has a size of 32× 32.

Models. We evaluate our method on PreAct-ResNet18 [5] and VGG19-BN [19] networks. We compare our method with
SOTA defense methods on three datasets and the two networks with a 10% poisoning ratio and 5% clean samples for defense.
To study the effectiveness of our method under different poisoning ratios, we compare with SOTA defense methods on
CIFAR-10 dataset and PreAct-ResNet18 network on 5% and 1% poisoning ratios.

Attack Details. We present some details about the backdoor attacks here. For BadNets-A2O and BadNets-A2A [4], we
patch a 3× 3 white square in the lower right corner of the images for CIFAR-10 and GTSRB datasets, and 6× 6 white square
for Tiny ImageNet. For Blended [3], we blend the poisoned samples with a Hello-Ketty image and the blended ratio is 0.1.

Defense Details. The seven SOTA defense methods can be divided into two types based on what the defender is given. AC
[2] and ABL [11] assume that the defender is given a poisoned dataset, while the remaining defense methods assume that the
defender can acquire a subset of clean samples and a backdoored model. The learning rate for all methods is set to 0.01 for FT
and FT-SAM, and the batch size is set to 256. The threshold for ANP [24] is set to 0.4 since we find that the recommended
threshold 0.2 fails to remove backdoors. For FT, the training epochs are set to 100 for CIFAR-10 and Tiny ImageNet, and 50
for GTSRB dataset. All other settings are consistent with those in BackdoorBench [23].

Details of Proposed Method. The most crucial hyper-parameter in FT-SAM is the perturbation radius ρ. We set ρ = 2 for
CIFAR-10 and ρ = 8 for Tiny ImageNet and GTSRB on PreAct-ResNet18. For VGG19-BN, ρ is set to 6 for all three datasets.
The epochs are set to 100 for CIFAR-10 and Tiny ImageNet, and 50 for GTSRB dataset. When the adaptive perturbation T is
not applied to w, the perturbation budget should be small to maintain the clean accuracy, where it is set to 0.5 in this work. All
the experiments are conducted using SGD with momentum 0.9 and weight decay 1e−4.

C. Defense Results in Comparison to SOTA Defenses
The defense performances of our method compared to the seven SOTA defense methods on the three datasets and two

networks are displayed in Table 1 to Table 4. Note that among all defenses, the one with the best performance is indicated in
boldface, and the value with underline denotes the second-best result. We also compare our FM-SAM with two latest defense
methods, i.e., CLP [27] and NGD [6]. Due to space limit, we display the defense performance on CIFAR-10 dataset in Table 5

As shown in these tables, all the defense methods fail to balance the performance on both the clean accuracy (ACC) and
the attack success rate (ASR) in all the situations except for FT-SAM, which is robust across all the attacks, datasets, and
backbones. The average defense effectiveness rating (DER) and ASR rank first among these defenses. Although the ACC of
the proposed method has dropped slightly, it usually falls within 1% on average.

D. Defense Results under Different Poisoning Ratios
To show the robustness of our method, we also test the defense performance under 5% and 1% poisoning ratios. We find

that tuning the hyperparameter ρ by a dynamic strategy often yields better performance, and the value is within [2, 10]. The
defense results with 5% benign data on CIFAR-10 dataset and PreAct-ResNet18 are shown in Table 6 and Table 7. As shown
in the tables, attack performance drops when the poisoning ratio is only 1% except for Trojan, which demonstrates the power
of this attack. FT-SAM significantly outperforms the other defense methods, although, at low poisoning ratios, it performs
worse than at high poisoning ratios.



Table 1. Comparison with the state-of-the-art defenses on GTSRB dataset with 5% benign data on PreAct-ResNet18 (%).

Attack
Backdoored FT FP [13] NAD [12] AC [2] NC [22] ANP [24] ABL [11] i-BAU [25] FT-SAM(Ours)

ACC/ASR ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

BadNets-A2O[4] 96.35/95.02 97.60/45.77/74.63 98.12/0.00/97.51 97.54/79.94/57.54 57.05/16.71/69.51 93.47/0.02/96.06 96.79/0.21/97.41 94.53/0.00/96.60 96.35/0.00/97.51 96.36/0.17/97.43

BadNets-A2A[4] 97.05/92.33 98.04/42.01/75.16 98.11/0.51/95.91 97.84/2.46/94.93 96.14/80.93/55.25 94.05/0.50/94.41 96.73/50.39/70.81 12.30/7.32/50.13 95.30/0.43/95.08 96.97/0.36/95.95

Blended[3] 97.97/99.67 98.07/94.09/52.79 98.31/56.79/71.44 97.76/95.90/51.78 96.86/99.36/49.60 88.04/2.61/93.57 97.86/97.99/50.79 43.29/4.66/70.17 94.92/42.09/77.27 96.55/3.13/97.56

Input-aware[15] 97.17/97.09 97.58/47.14/74.97 97.98/1.36/97.86 97.47/65.94/65.57 38.43/51.69/43.33 95.24/1.16/97.00 96.20/1.12/97.50 9.97/59.83/25.03 96.03/1.13/97.41 98.23/0.02/98.54

LF[26] 97.97/99.58 98.00/83.83/57.88 97.87/69.19/65.15 98.24/79.76/59.91 36.25/98.80/19.53 92.22/0.18/96.82 98.03/60.36/69.61 26.29/0.68/63.61 88.69/7.43/91.44 96.52/0.11/99.01

SSBA[10] 98.31/99.77 98.39/98.88/50.45 98.47/60.19/69.79 98.37/96.95/51.41 53.59/80.78/37.14 90.75/1.51/95.35 98.36/98.98/50.39 50.89/0.50/75.92 87.27/0.18/94.27 95.99/0.70/98.37

Trojan[14] 98.33/100.00 98.38/87.72/56.14 98.00/42.08/78.80 98.01/0.10/99.79 96.90/100.00/49.28 92.29/0.02/96.97 98.17/86.92/56.46 89.65/0.00/95.66 93.66/0.00/97.66 96.92/0.11/99.24

Wanet[16] 95.71/98.20 98.69/0.02/99.09 98.88/0.28/98.96 98.32/0.04/99.08 61.67/2.14/81.01 96.34/0.01/99.09 97.42/0.18/99.01 40.36/86.25/28.30 97.50/0.26/98.97 98.61/0.00/99.10

Avg 97.35/97.71 98.09/62.43/67.64 98.22/28.80/84.43 97.94/52.64/72.50 67.11/66.30/50.58 92.80/0.75/96.16 97.45/49.52/74.00 45.91/19.91/63.18 93.72/6.44/93.70 97.02/0.57/98.15

Table 2. Comparison with the SOTA defenses on CIFAR-10 dataset with 5% benign data on VGG19-BN (%).

Attack
Backdoored FT FP [13] NAD [12] AC [2] NC [22] ANP [24] ABL [11] i-BAU [25] FT-SAM(Ours)

ACC/ASR ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

BadNets-A2O[4] 90.42/94.43 89.06/2.34/95.36 89.11/12.39/90.37 86.80/5.77/92.52 84.79/93.01/47.90 88.97/5.63/93.68 90.44/87.64/53.39 80.30/23.23/80.54 87.69/3.13/94.29 89.02/1.52/95.76

BadNets-A2A[4] 91.16/84.39 89.65/1.09/90.90 89.70/1.91/90.51 88.15/1.60/89.89 85.85/88.82/47.35 91.16/84.39/50.00 91.29/81.87/51.26 20.05/14.90/49.19 86.86/2.19/88.95 89.58/1.22/90.80

Blended[3] 91.60/96.68 89.66/56.21/69.26 89.54/72.33/61.14 88.06/69.22/61.96 86.72/99.98/47.56 89.59/57.57/68.55 91.49/91.04/52.76 10.00/0.00/57.54 87.17/9.22/91.51 88.39/1.43/96.02

Input-aware[15] 88.66/94.58 91.34/19.54/87.52 91.34/5.42/94.58 91.00/14.11/90.23 48.01/22.54/65.69 91.30/4.39/95.09 89.67/20.43/87.07 30.10/99.66/20.72 88.30/3.70/95.26 90.59/3.41/95.58

CLA[18] 83.37/99.83 88.56/8.42/95.71 88.80/15.34/92.24 87.39/7.83/96.00 78.91/97.16/49.11 83.37/99.83/50.00 83.24/57.31/71.20 10.00/100.00/13.32 85.68/11.23/94.30 88.80/7.50/96.17

LF[26] 83.28/13.83 88.81/1.31/56.26 88.18/1.29/56.27 85.08/3.07/55.38 80.20/11.26/49.75 88.33/1.22/56.31 89.20/1.34/56.24 55.30/0.14/42.85 83.06/6.66/53.48 88.45/1.79/56.02

SIG[1] 83.48/98.87 88.11/2.90/97.98 88.66/8.28/95.29 86.14/6.30/96.28 78.84/99.52/47.68 83.48/98.87/50.00 82.94/0.00/99.16 10.00/0.00/62.69 84.50/4.47/97.20 88.59/2.00/98.43

SSBA[10] 90.85/95.11 89.07/62.26/65.54 89.26/65.33/64.09 88.11/52.22/70.07 85.81/90.63/49.72 90.85/95.11/50.00 91.11/76.00/59.56 10.00/0.00/57.13 85.61/12.37/88.75 89.25/3.30/95.11

Trojan[14] 91.57/100.00 90.30/6.63/96.05 90.04/29.71/84.38 87.01/5.17/95.14 86.02/1.64/96.41 91.57/100.00/50.00 89.27/0.00/98.85 10.00/100.00/9.22 86.40/2.69/96.07 88.14/5.10/95.74

Wanet[16] 84.58/96.49 91.45/2.79/96.85 91.10/3.36/96.57 90.68/10.23/93.13 85.51/83.73/56.38 84.58/96.49/50.00 89.82/0.96/97.77 10.00/100.00/12.71 89.61/2.40/97.05 91.36/1.00/97.75

Avg 87.90/87.42 89.60/16.35/85.14 89.57/21.54/82.54 87.84/17.55/84.06 80.07/68.83/55.75 88.32/64.35/61.36 88.85/41.66/72.73 24.58/43.79/40.59 86.49/5.81/89.69 89.22/2.83/91.74

Table 3. Comparison with the SOTA defenses on Tiny ImageNet dataset with 5% benign data on VGG19-BN (%).

Attack
Backdoored FT FP [13] NAD [12] AC [2] NC [22] ANP [24] ABL [11] i-BAU [25] FT-SAM(Ours)

ACC/ASR ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

BadNets-A2O[4] 43.56/99.96 49.84/99.45/50.26 49.49/96.74/51.61 49.35/0.27/99.84 43.04/99.99/49.74 43.57/99.96/50.00 43.42/4.46/97.68 41.10/0.00/98.75 45.02/98.97/50.49 50.08/0.14/99.91

BadNets-A2A[4] 54.44/50.74 53.97/49.22/50.53 53.13/1.33/74.05 54.13/36.48/56.98 42.98/36.57/51.36 51.14/30.65/58.40 54.40/1.99/74.36 37.10/31.19/51.11 46.72/36.46/53.28 52.91/3.24/72.99

Blended[3] 50.68/97.08 50.04/80.81/57.81 49.78/64.10/66.04 50.24/57.45/69.59 41.26/96.10/45.78 48.84/0.12/97.56 50.44/95.46/50.69 40.84/12.14/87.55 45.57/89.55/51.21 49.05/6.01/94.72

Input-aware[15] 53.20/99.84 53.33/0.06/99.89 53.16/1.42/99.19 53.50/0.14/99.85 41.39/98.49/44.77 53.29/0.08/99.88 53.41/0.01/99.91 40.48/3.48/91.82 47.97/6.31/94.15 51.78/0.26/99.08

LF[26] 48.92/7.73 50.23/0.03/53.85 50.29/0.02/53.85 50.44/0.08/53.82 39.28/9.90/45.18 46.42/0.01/52.61 50.68/0.39/53.67 34.89/8.79/42.99 43.81/0.03/51.29 48.78/0.02/53.78

SSBA[10] 51.39/97.92 50.58/88.93/54.09 50.27/32.89/81.95 50.23/71.66/62.55 42.40/97.50/45.72 49.39/0.05/97.93 51.41/97.26/50.33 40.68/0.26/93.47 47.43/90.02/51.97 51.49/1.70/98.11

Trojan[14] 51.50/99.98 50.94/98.84/50.29 50.25/16.17/91.28 51.02/99.96/49.77 42.92/99.90/45.75 48.85/0.11/98.61 51.57/97.06/51.46 36.97/0.00/92.72 43.77/99.69/46.28 49.59/0.04/99.01

Wanet[16] 54.11/99.98 54.21/0.14/99.92 53.69/19.59/89.99 53.67/0.10/99.72 41.14/96.03/45.49 51.86/0.11/98.81 54.18/60.06/69.96 41.67/1.16/93.19 48.32/88.33/52.93 51.73/0.50/98.55

Avg 50.98/81.65 51.64/52.19/64.58 51.26/29.03/75.99 51.57/33.27/74.02 41.80/79.31/46.72 49.17/16.39/81.72 51.19/44.58/68.51 39.22/7.13/81.45 46.08/63.67/56.45 50.68/1.49/89.52

Table 4. Comparison with the SOTA defenses on GTSRB dataset with 5% benign data on VGG19-BN (%).

Attack
Backdoored FT FP [13] NAD [12] AC [2] NC [22] ANP [24] ABL [11] i-BAU [25] FT-SAM(Ours)

ACC/ASR ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

BadNets-A2O[4] 97.28/93.44 97.42/30.37/81.54 97.63/0.05/96.69 97.43/89.78/51.83 32.14/65.17/31.56 94.78/0.00/95.47 97.10/0.02/96.62 3.56/0.00/49.86 91.01/20.51/83.33 95.98/0.03/96.05

BadNets-A2A[4] 97.59/93.29 98.40/88.12/52.59 98.34/69.48/61.91 97.83/88.16/52.57 95.00/89.62/50.54 95.34/1.09/94.98 98.06/86.56/53.37 10.55/8.30/48.97 96.83/0.37/96.08 96.86/0.20/96.18

Blended[3] 97.06/99.12 97.43/97.21/50.96 97.66/97.30/50.91 97.28/96.83/51.15 95.31/98.38/49.50 94.95/56.62/70.20 97.13/98.56/50.28 3.56/0.00/52.81 96.38/63.49/67.48 97.18/1.73/98.70

Input-aware[15] 96.32/85.03 91.34/19.54/80.25 97.65/0.49/92.27 97.12/1.63/91.70 31.88/17.28/51.65 96.53/0.24/92.39 96.94/0.00/92.51 1.74/81.95/4.25 94.98/38.73/72.48 97.25/0.04/92.49

LF[26] 97.25/0.42 97.07/0.03/50.10 97.59/0.02/50.20 97.43/0.02/50.20 28.04/3.88/15.40 95.04/0.04/49.09 97.35/0.45/50.00 5.53/43.11/4.14 89.75/0.01/46.46 95.19/0.00/49.18

SSBA[10] 97.85/99.43 98.00/98.97/50.23 97.93/98.77/50.33 97.75/98.57/50.38 31.61/71.26/30.97 94.90/67.48/64.50 97.85/99.34/50.04 21.54/0.00/61.56 86.98/99.92/44.57 96.00/1.81/97.88

Trojan[14] 97.97/100.00 97.68/8.27/95.72 98.00/99.99/50.00 97.76/6.34/96.73 97.02/100.00/49.52 95.61/0.02/98.82 97.85/97.28/51.30 5.23/0.00/53.63 96.01/0.00/99.02 96.99/0.02/99.51

Wanet[16] 94.76/98.32 98.36/25.14/86.59 98.66/1.31/98.51 98.37/0.20/99.06 32.05/4.03/65.79 96.41/7.30/95.51 98.21/0.10/99.11 12.12/58.00/28.84 87.17/10.30/90.21 98.76/0.04/99.14

Avg 97.01/83.63 96.96/45.95/68.50 97.93/45.93/68.85 97.62/47.69/67.95 55.38/56.20/43.12 95.45/16.60/82.62 97.56/47.79/67.90 7.98/23.92/38.01 92.39/29.17/74.95 96.78/0.48/91.14



Table 5. Comparison with two latest defenses on CIFAR-10 dataset with 5% benign data on PreAct-ResNet18 (%)
Defense ATTCK BadNets-A2O[4] Blended[3] Input-aware[15] CLA[18] LF[26] SIG[1] SSBA[10] Trojan[14] Wanet[16]

CLP[27]
ACC 88.68 89.08 90.66 83.29 87.34 82.03 91.27 92.18 90.06
ASR 83.64 97.49 11.97 0.00 99.02 99.58 12.68 99.99 2.09

NGD[6]
ACC 91.17 92.41 94.11 91.70 92.30 91.13 92.20 92.85 93.06
ASR 2.30 52.01 0.91 5.43 89.33 1.39 77.19 29.29 2.03

FT-SAM(Ours)
ACC 92.21 92.44 93.76 90.72 91.07 91.16 92.12 92.75 92.87
ASR 1.63 4.91 1.07 3.52 3.81 0.80 2.80 4.12 0.96

Table 6. Comparison with the SOTA defenses with a 5% poisoning ratio on CIFAR-10 dataset with 5% benign data on PreAct-ResNet18
(%).

Attack
Backdoored FT FP [13] NAD [12] AC [2] NC [22] ANP [24] ABL [11] i-BAU [25] FT-SAM(Ours)

ACC/ASR ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

BadNets-A2O[4] 92.35/89.52 90.83/2.50/92.75 92.10/1.47/93.90 89.92/1.98/92.56 88.67/88.33/48.75 90.88/1.62/93.22 92.23/2.80/93.30 81.58/0.00/89.38 89.61/1.00/92.89 92.27/2.12/93.66

BadNets-A2A[4] 92.54/65.85 91.78/0.93/82.08 92.37/1.02/82.33 91.19/1.38/81.56 87.71/54.64/53.19 89.46/1.25/80.76 91.93/1.45/81.90 42.31/38.38/38.62 90.69/1.67/81.17 92.54/0.91/82.47

Blended[3] 93.66/94.82 93.18/83.63/55.35 93.10/9.64/92.31 93.08/66.46/63.89 89.27/87.52/51.46 93.00/87.53/53.31 93.24/82.26/56.07 73.23/0.19/87.10 86.73/1.30/93.30 91.07/8.27/91.98

Input-aware[15] 91.51/93.05 93.08/66.97/63.04 93.17/26.71/83.17 93.28/92.26/50.40 89.05/72.60/59.00 93.23/82.31/55.37 91.06/13.31/89.65 85.54/83.97/51.56 91.28/22.10/85.36 93.69/6.23/93.41

CLA[18] 93.47/99.33 92.67/96.29/51.12 92.38/39.00/79.62 92.38/90.19/54.03 89.87/96.14/49.79 93.47/99.33/50.00 92.76/23.16/87.73 73.52/99.67/40.03 88.26/40.60/76.76 92.86/5.70/96.51

LF[26] 93.51/97.29 93.19/96.23/50.37 92.11/69.07/63.41 92.93/94.96/50.88 89.12/95.33/48.78 93.04/54.28/71.27 93.01/73.98/61.41 61.19/94.11/35.43 89.85/28.73/82.45 92.74/3.81/96.35

SIG[1] 93.29/95.06 92.73/92.41/51.04 92.87/43.99/75.32 92.21/82.62/55.68 89.66/94.44/48.49 93.29/95.06/50.00 92.78/97.47/49.75 57.72/0.00/79.74 88.04/7.30/91.25 92.62/0.61/96.89

SSBA[10] 93.08/94.09 92.62/83.63/55.00 92.23/13.70/89.77 92.35/86.03/53.66 89.12/86.92/51.60 93.08/94.09/50.00 93.07/79.38/57.35 78.75/0.94/89.41 90.62/2.62/94.50 92.35/3.84/94.76

Trojan[14] 93.61/99.99 92.82/99.87/49.67 92.77/88.68/55.24 93.08/31.86/83.80 89.61/99.97/48.01 93.03/99.79/49.81 93.26/99.99/49.83 70.19/0.00/88.28 89.19/4.89/95.34 93.12/6.84/96.33

Wanet[16] 93.38/97.27 93.45/19.96/88.65 93.01/1.50/97.70 93.31/8.56/94.32 88.13/58.24/66.89 93.38/97.27/50.00 92.93/0.31/98.26 60.52/99.04/33.57 89.16/1.58/95.74 93.27/0.80/98.18

Avg 93.04/92.63 92.64/64.24/63.91 92.61/29.48/81.28 92.37/55.63/68.08 89.02/83.41/52.60 92.59/71.25/60.37 92.63/47.41/72.52 68.46/41.63/63.31 89.34/11.18/88.88 92.65/3.91/94.05

E. Ablation Study of The Effectiveness of Tw

In this section, we first study the effectiveness of the adaptive constraint Tw, then we show the experimental results on the
defense that directly regularizes the l2 weight norm.

Effectiveness of The Adaptive Constraint Tw. The constraint without adaptive perturbation is equal to the situation where
Tw is set to an identity matrix. The comparison result is shown in Table 8. As shown in the table, the method without adaptive
constraints has a lower ACC and a higher ASR on average. This gap is more pronounced when encountering complex attacks.
It demonstrates the necessity of the adaptive constraint to the perturbation in FT-SAM.

Defense results of The l2 weight norm regularization. To show the effectiveness of FT-SAM, we also test the defense
performance by directly fine-tuning with regularizing the l2 norm on the network parameters, i.e., the loss function is

min
w

E(x,y)∈Dbenign
[ℓ(fw(x),y)] + γ∥w∥22, (6)

where γ > 0 is the hyper-parameter. We test this method on several complex attacks and the results under different values of
γ > 0 are shown in Table 9. It is observed that regularizing weights can also weaken backdoor attacks to a certain extent.
However, the hyper-parameter γ is very sensitive to different attacks, and removing backdoors completely usually results in a
large drop in clean accuracy. On the contrary, our method is more robust to different attacks, showing the effectiveness of our
method on perturbing the backdoor-related weights.

F. Visualization Analysis
Visualization of Gradient Change within epochs. In order to conduct a more comprehensive investigation into the intricate
connection between backdoor-related neurons and the gradient norms derived through FT-SAM computation, we visualize the
gradient norms for each neuron situated in the last convolutional layer of the defense models. This visualization is performed
across the first batch of each epoch, ranging from the first to the eighth epoch. To facilitate clarity within this visualization, the
neurons are sorted by TAC calculated by the specific backdoored model instead of the changing defense model. The attack
success rate (ASR) is also labeled in figures to better show the changes of gradient norms within different ASR. The last
convolution layer is chosen since the backdoor removal effect of FT-SAM is layer-wisely accumulated, and thus weight norm



Table 7. Comparison with the SOTA defenses with a 1% poisoning ratio on CIFAR-10 dataset with 5% benign data on PreAct-ResNet18
(%).

Attack
Backdoored FT FP [13] NAD [12] AC [2] NC [22] ANP [24] ABL [11] i-BAU [25] FT-SAM(Ours)

ACC/ASR ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

BadNets-A2O[4] 93.12/74.20 90.83/2.50/84.71 92.88/2.44/85.76 92.38/10.87/81.30 89.25/11.84/79.24 92.77/30.67/71.59 93.09/5.84/84.16 82.56/0.83/81.40 90.05/2.80/84.17 92.74/1.31/86.25

BadNets-A2A[4] 93.42/28.62 91.78/0.93/63.03 92.32/1.07/63.23 92.28/1.87/62.81 88.72/1.86/61.03 93.42/28.60/50.01 93.12/4.78/61.77 52.76/21.93/33.02 88.84/2.11/60.97 92.74/1.11/63.42

Blended[3] 93.69/73.88 93.18/83.63/49.75 92.99/5.97/83.61 93.24/47.94/62.74 89.62/41.51/64.15 93.69/73.88/50.00 93.25/49.33/62.05 74.45/24.90/64.87 86.56/7.26/79.75 91.85/4.62/83.71

Input-aware[15] 91.15/68.53 93.08/66.97/50.78 93.07/20.81/73.86 93.13/84.92/50.00 89.99/56.44/55.46 93.19/57.83/55.35 91.58/63.79/52.37 58.76/21.92/57.11 90.72/10.62/78.74 93.31/1.47/83.53

CLA[18] 93.71/94.41 92.67/96.29/49.48 93.03/30.77/81.48 93.31/87.73/53.14 89.58/11.34/89.47 93.38/91.00/51.54 93.50/93.83/50.18 65.80/14.00/76.25 88.67/11.01/89.18 92.96/4.97/94.35

LF[26] 93.29/85.94 93.19/96.23/49.95 92.31/61.76/61.60 92.91/77.48/54.04 89.38/78.67/51.68 91.09/3.64/90.05 93.08/45.53/70.10 56.17/63.32/42.75 85.67/72.01/53.16 92.10/4.50/90.13

SIG[1] 93.68/78.68 92.73/92.41/49.53 92.02/67.74/54.64 93.13/78.11/50.01 90.12/79.77/48.22 93.68/78.68/50.00 93.47/78.38/50.05 65.12/0.00/75.06 90.11/31.69/71.71 91.43/3.29/86.57

SSBA[10] 93.51/70.69 92.62/83.63/49.56 93.17/7.20/81.57 93.15/54.54/57.89 89.29/31.38/67.55 93.16/54.89/57.73 93.28/24.48/72.99 59.42/65.03/35.78 90.42/1.10/83.25 92.96/1.81/84.16

Trojan[14] 93.80/99.89 92.82/99.87/49.52 92.91/98.32/50.34 93.45/99.87/49.84 89.95/99.73/48.15 93.42/99.91/49.81 93.51/99.86/49.87 61.68/43.73/62.02 87.56/59.07/67.29 93.14/8.23/95.50

Wanet[16] 93.03/81.05 93.45/19.96/80.54 93.33/0.49/90.28 93.27/2.59/89.23 89.18/4.67/86.27 93.21/3.51/88.77 92.75/1.24/89.77 29.86/81.91/18.42 90.64/1.19/88.73 93.21/0.76/90.15

Avg 93.24/75.59 92.64/64.24/57.68 92.80/29.66/72.64 93.03/54.59/61.10 89.51/41.72/65.12 93.10/52.26/61.48 93.06/46.71/64.33 60.66/33.76/54.67 88.92/19.89/75.69 92.64/3.21/85.78

Table 8. Comparison with the state-of-the-art defenses on CIFAR-10 dataset with 5% benign data on PreAct-ResNet18 (%). The better result
between the two is indicated in boldface.

Model
BadNets-A2O[4] BadNets-A2A[4] Blended[3] Input-aware[15] CLA[18] LF[26] SIG[1] SSBA[10] Trojan[14] Wanet[16] Avg

ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

Backdoored 91.82/93.79/- 91.89/74.42/- 93.44/97.71/- 94.03/98.35/- 84.55/99.93/- 93.01/99.06/- 84.49/97.87/- 92.88/97.07/- 93.47/99.99/- 92.80/98.90/- 91.24/95.71/-

w/o Adaptive 90.85/1.53/95.64 90.95/1.39/86.05 91.30/2.44/96.56 92.94/1.39/97.93 89.95/6.19/96.87 90.77/6.73/95.04 89.84/0.49/98.69 90.74/5.78/94.57 90.80/14.02/91.65 91.94/1.89/98.07 91.01/4.19/95.65

w/ Adaptive 92.21/1.63/96.08 91.87/1.03/86.69 92.44/4.91/95.90 93.76/1.07/98.51 90.72/3.52/98.21 91.07/3.81/96.65 91.16/0.80/98.53 92.12/2.80/96.75 92.75/4.12/97.57 92.87/0.96/98.97 92.10/2.47/96.62

Table 9. Defense results of l2 weight norm regularization on CIFAR-10 dataset with 5% benign data on PreAct-ResNet18 (%).
Attack BadNets-A2O[4] Blended[3] Input-aware[15] LF[26] SSBA[10] Trojan[14]

γ ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

(Attack) 91.82/93.79/- 93.44/97.71/- 94.03/98.35/- 93.01/99.06/- 84.49/97.87/- 92.88/97.07/-

0.001 90.69/1.27/95.70 92.77/74.13/61.45 93.97/10.55/89.84 92.40/85.36/56.55 92.37/67.56/65.16 92.70/26.38/85.25

0.005 89.24/1.33/94.94 91.80/7.73/94.17 93.67/10.76/89.73 91.75/33.13/82.33 91.69/9.24/94.31 92.23/11.03/92.69
0.01 88.99/0.80/95.08 89.13/1.24/96.08 92.07/11.06/89.58 90.54/13.59/91.50 89.04/2.58/97.64 89.62/9.98/91.91

0.05 36.55/0.11/69.20 28.44/1.59/65.56 41.08/6.87/67.47 35.85/17.08/62.41 49.13/2.18/80.16 44.50/9.27/69.71

0.1 18.47/2.59/58.93 12.79/6.41/55.33 18.90/3.10/58.27 17.93/2.27/60.85 10.10/0.51/61.48 13.66/2.87/57.49

changes in the last layer after fine-tuning all layers are most obvious to show the performance. As shown in Figure 1, the
norms of the gradient are obviously positively related to the backdoor-related neurons until the backdoor is removed. This
observation serves to unveil the intrinsic mechanism underlying FT-SAM’s framework.

Grad-CAM Visualization. Figure 2 to 5 show the defense effect of our method on BadNets, Blended, SIG, and Wanet
attacks by Grad-CAM [17]. The top rows show the poisoned samples, while the second and third rows show the Grad-CAM
figures on the backdoored models and the defense models, respectively. Figure 2 to 4 belong to visible backdoor attacks.
Comparing the highlighted area of the heat maps of the backdoored models and defense models, the defense models concentrate
on the subject region of the images instead of the trigger features. Figure 5 shows the invisible backdoor attack. The defense
models focus more on the subject region, whereas the backdoored models show similar areas of interest in all these images.

T-SNE Visualization. We provide more T-SNE [21] visualization figures of our method as shown in Figure 6. compared
to the first row which exhibits clustering of poisoned features in the feature space of the backdoored models, the proposed
defense method successfully breaks up these poisoned features and makes them distribute around the normal features.
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Figure 1. A comparison of the gradient norms for each neuron in the last convolution layer of the defense models, which are calculated
during the first batch of each epoch. The neurons are sorted by TAC of the backdoored model.

Figure 2. Grad-CAM visualization of regions contributed to model decision under BadNets attack and FT-SAM defense with PreAct-
ResNet18 on CIFAR-10.

Figure 3. Grad-CAM visualization of regions contributed to model decision under Blended attack and FT-SAM defense with PreAct-ResNet18
on CIFAR-10.



Figure 4. Grad-CAM visualization of regions contributed to model decision under SIG attack and FT-SAM defense with PreAct-ResNet18
on CIFAR-10.

Figure 5. Grad-CAM visualization of regions contributed to model decision under Wanet attack and FT-SAM defense with PreAct-ResNet18
on CIFAR-10.

Figure 6. T-SNE visualization under different backdoor attacks and FT-SAM defense models with PreAct-ResNet18 on CIFAR-10.
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