
A. Proof of the scale-invariant property
Without loss of generality, assume a two layers neural

network f and � is a ReLU-based activation function.

f(✓f ,x) = ✓(2)�(✓(1)x). (10)

The corresponding scaled neural network g is:

g(✓g,x) =
1

�
✓(2)�(�✓(1)x), (11)

where the non-negative � is the scaling factor.
Suppose we calculate the MRC value of the first module

✓(1) and 1
�✓

(1).

Theorem A.1. The rectified function �(x) = max(x, 0) is
a homogeneous function where

8(z,�) 2 R⇥ R+, �(�z) = ��(z). (12)

Proof.

�(�z) = max(�z, 0) = �max(z, 0) = ��(z). (13)

Theorem A.2. 8x, f(✓f ,x) ⌘ g(✓g,x).

Proof.

g(✓g,x) =
1

�
✓(2)�(�✓(1)x) (14)

⌘ 1

�
�✓(2)�(✓(1)x) (15)

⌘ ✓(2)�(✓(1)x) (16)
⌘ f(✓f ,x) (17)

Theorem A.3. The robust losses of f and g are equal:

R(f(✓f ),D) ⌘ R(g(✓g),D). (18)

Proof. According to Theorem A.2,

8x+�x, f(✓f ,x+�x) ⌘ g(✓g,x+�x). (19)

Thus,

max
�x2S

`(f(✓f ,x+�x), y) (20)

⌘ max
�x2S

`(g(✓g,x+�x), y). (21)

Thus,

R(f(✓f ),D) =
X

(x,y)2D

max
�x2S

`(f(✓f ,x+�x), y) (22)

⌘
X

(x,y)2D

max
�x2S

`(g(✓g,x+�x), y) (23)

= R(g(✓g),D) (24)

Theorem A.4. The Module Robustness Criticality (MRC)
proposed in Definition 3.1 is invariant to the scaling of the
parameters.

Proof. Let �✓f = {�✓(1)
f ,0},�✓g = {�✓(1)

g ,0} be the
perturbation of the first layer for network f and g respec-
tively. First, we prove

max
�✓f2C✓f

R(f(✓f +�✓f ),D) (25)

 max
�✓g2C✓g

R(g(✓g +�✓g),D). (26)

Let

�✓⇤
f = argmax

�✓f2C✓f

R(f(✓f +�✓f ),D), (27)

�✓⇤
g = argmax

�✓g2C✓g

R(g(✓g +�✓g),D). (28)

Consider the perturbation �✓̃g = ��✓⇤
f for g, it is easy

to show that �✓̃g 2 C✓g ,

C✓f = {�✓f
�� k�✓fkp  ✏k✓(1)

f kp}, (29)

C✓g = {�✓g
�� k�✓gkp  ✏k✓(1)

g kp} (30)

= {�✓g
���✓g = �k�✓fkp  ✏�k✓(1)

f kp}. (31)

Therefore,
R(g(✓g +�✓̃g),D)  max

�✓g2C✓g

R(g(✓g +�✓g),D) (32)

= R(g(✓g +�✓⇤
g),D). (33)

Repeat the same analysis as presented in Theorem A.2,

g(✓g +�✓̃g) (34)

=
1

�
✓(2)�((�✓(1) + ��✓⇤

f )x) (35)

=✓(2)�((✓(1) +�✓⇤
f )x) (36)

⌘f(✓f +�✓⇤
f ). (37)

According to Theorem A.3,

R(f(✓f +�✓⇤
f ),D) ⌘ R(g(✓g +�✓̃g),D) (38)

 R(g(✓g +�✓⇤
g),D). (39)

Similarly, we can prove

max
�✓g2C✓g

R(g(✓g +�✓g),D) (40)

 max
�✓f2C✓f

R(f(✓f +�✓f ),D). (41)

Thus,

max
�✓f2C✓f

R(f(✓f +�✓f ),D) (42)

= max
�✓g2C✓g

R(g(✓g +�✓g),D). (43)

Such that the proof ends.



B. Algorithm of RiFT
The complete algorithm of RiFT is presented in Algo-

rithm 2.

Algorithm 2 Robust Critical Fine-Tuning
Input: adversarially trained model weights ✓AT , standard

dataset Dstd, weight perturbation scaling factor ↵, fine-
tuning optimization iteration steps T and learning rate
�, weight decay facotr �.

Output: The fine-tuned model weights ✓⇤
AT .

1: Step 1: Calculate MRC for each module
2: for Module weight ✓(j) do
3: Calculate MRC value of ✓(j) using Algorithm 1.
4: end for
5: Select the module with lowest MRC value, denote as

non-robust critical module ✓(i)

6: Step 2: Fine-tuning on Non-robust critical module
7: ✓1 = ✓AT

8: for t = 1, . . . , T do . Fine-tuning T epochs
9: for Batch Bk 2 Dstd do

10: Calculate loss: L(f(✓t),Bk))

11: ✓(i)
t+1 = ✓(i)

t+1 � �r✓t(L) . Gradient Descent
12: end for
13: ✓FT = ✓t if ✓t obtain highest std test acc.
14: end for
15: Step 3: Interpolation
16: for ↵ 2 (0, 1, 0.05) do
17: ✓↵ = (1� ↵)✓AT + ↵✓FT

18: ✓⇤
FT = ✓↵ if it reaches best standard test acc while

preserve the robustness as ✓AT .
19: end for
20: Return Fine-tuned model weights ✓⇤

FT

C. Training Details
C.1. Experiment Environment

All experiments are conducted on a workstation
equipped with an NVIDIA GeForce RTX 3090 GPU with
24GB memory and NVIDIA A100 with 80GB memory.
The PyTorch version is 1.11.0.

C.2. Adversarial Training Details
For vanilla adversarial training, We set the initial learn-

ing rate as 0.1, which decays at 100 and 105 epochs with
factor 10. When generating adversarial examples, we set
BN as train mode since it usually achieves higher robust-
ness.

When incorporating RiFT with other adversarial train-
ing methods, the SCORE method is incorporated with
TRADES. For the CIFAR100 training, we ran with three
different learning rate and select the best model weights as

the one with highest robust accuracy. The hyper-parameter
settings are either based on their original paper or same as
the vanilla AT, depends on which method achieves better
robust accuracy.

C.3. Fine-tuning Details
The hyper-parameter that most affects fine-tuning is the

initial learning rate. According to our experience, we find a
small learning rate usually performs better. If the adversar-
ial robustness of the final fine-tuned weights is still higher
than the robustness of the initial adversarial training, we
then increase the learning rate.

C.4. The MRC value of ResNet34 and WRN34-10
Figure C.1 and Figure C.2 shows the Module Ro-

bust Criticality (MRC) value of each module in ResNet34
trained on CIFAR100 and WideResNet34 trained on Tiny-
ImageNet, respectively. It can be observed that both mod-
els exhibit redundant capacity. Additionally, Figure C.3
and Figure C.4 shows the MRC value of each module in
ResNet18 trained on CIFAR100 and Tiny-ImageNet, re-
spectively. As we discussed in Section 5.3 and Section 5.5,
ResNet18 has a lower redundant capacity compared to
ResNet34 and WideResNet34, and the redundant capacity
decreases as the classification task becomes more complex.

C.5. More interpolation results
Figure C.5 shows the interpolation results of different

modules of ResNet18 trained on CIFAR100 dataset. It can
be observed that fine-tuning on robust-critical module can
also help improve generalization and robustness. This does
not mean that our MRC is wrong, as we claimed in Sec-
tion 5.2, fine-tuning on robust-critical module does not nec-
essarily hurt robustness. The MRC provides guidance on
which module to fine-tune for optimal results, and still, fine-
tuning on non-robust-critical module achieves the highest
test accuracy while preserving robustness.

D. Analysis of the complexity of MRC algo-
rithm

When identifying the most non-robust-critical module,
it is required to iterate all modules of the model. Suppose
a model with n modules, for each module, the calculation
complexity depends on the iteration steps in Algorithm 1.
Considering the different overheads for each iterative com-
putation of the modules at different locations, for example,
when calculating the last module’s MRC value, it only re-
quires forward-backward iteration of the last layer of pa-
rameters. Thus, the average total forward-backward itera-
tion of each module is n/2. In our experiments, we set the
learning rate as 1 and the iteration step as 10. Thus, in our
experiments, the complexity of MRC algorithm cost 5n to-
tal forward-backward propagation.



Figure C.1. Example of module robust criticality (MRC) and its corresponding robust accuracy drop of ResNet34 trained on CIFAR100.

Figure C.2. Example of module robust criticality (MRC) and its corresponding robust accuracy drop of WideResNet34 trained on Tiny-
ImageNet.

Figure C.3. Example of module robust criticality (MRC) and its corresponding robust accuracy drop of ResNet18 trained on CIFAR100.

Figure C.4. Example of module robust criticality (MRC) and its corresponding robust accuracy drop of ResNet18 trained on Tiny-ImageNet.



Figure C.5. Interpolation results of fine-tuning on different mod-
ules of ResNet18 on CIFAR100 dataset. Dots denote different in-
terpolation points between the final fine-tuned weights of RiFT
and the initial adversarially trained weights.


