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The supplementary materials are arranged as follows. In
Sec. A, additional details are presented to provide a more
comprehensive understanding of our method. In Sec. B,
further experimental results are included to validate the ef-
fectiveness of our approach. In Sec. C and D, additional vi-
sualization results and analysis are provided to offer deeper
insights into the functioning of our method.

A. More Details of Method

A.1. Derivation of Parameter Valid Ranges

In Sec 3.3 of the text, we propose a constraint to ensure
the stability of model training. This constraint limits the
values of Gabor filter parameters into their valid ranges,
which can be derived based on the properties of Gabor
filters and digital images in different domains. According
to the periodicity of angles, the orientation parameter has
a valid range of [0, π]. As for the other parameters, we
provide a detailed derivation of their valid ranges in the
subsequent sections.

Scale Parameter [σx, σy]. [σx, σy] are the scale parame-
ters that determine the filter effective size in both spatial
and frequency domains. In spatial domain, a Gaussian func-
tion modulates the sinusoidal plane wave, which is defined
in the infinite signal space to satisfy its mathematical prop-
erties [1]. However, an image is a finite length signal in
the spatial domain, with its valid signal zone determined
by the image width S. Specifically for an image with size
S × S, the valid zone for each axis can be expressed as
[−0.5S, 0.5S] with the image center as the coordinate ori-
gin. Previous research [1] indicates that directly applying
infinite-length-defined filters to the finite-length image zone
would cause mathematical deficiency, which could limit the
effectiveness of Gabor filters due to waveform distortion.
To alleviate the problem, we propose a solution to concen-
trate most of the Gabor filter energy within the finite signal
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zone. This ensures that only a small amount of filter energy
spills over the finite signal, minimizing the negative effects
of using infinite-length-defined filters on finite-length im-
ages. Specifically for a Gaussian with mean µ and variance
σ, we constrain [µ − ασ, µ + ασ] to fall in the valid sig-
nal zone of the image. α is a hyper-parameter to control
the energy concentration degree. According to the experi-
mental results shown in Table. 1, we choose 2.5 to be the
optimal value for α. By doing so, 98.76% of the Gaussian
energy can be subtended, and only 1.24% of filter energy
spills out of the image signal, whose negative effect is neg-
ligible. Based on the above analysis, we derive the spatial-
wise constraints for parameters [σx, σy] as follows:{

[−0.25σx, 0.25σx] ⊆ [−0.5S, 0.5S]

[−0.25σy, 0.25σy] ⊆ [−0.5S, 0.5S]
(1)

We further analyze the frequency-wise constraints for
[σx, σy]. We perform a Fourier transform on Eq. 1 of text
and get the frequency-wise expression of Gabor filters as
follows:
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As can be observed from Eq. 2, in frequency domain,

the Gabor filter also contains a Gaussian with mean {W, 0}
and variance { 1

2πσx
, 1
2πσy

} to control its effective size. The
valid signal zone in frequency domain can be derived ac-
cording to Nyquist sampling theorem, which indicates that
for a given sample rate fs, perfect reconstruction is guar-
anteed possible when the frequency |W | < (fs/2), other-
wise signal aliasing would happen. In an image, the sample
rate equals 1 pixel, so any frequency component larger than
0.5 is distorted thus being invalid. This means the valid
signal zone in frequency domain is [−0.5, 0.5]. Following
the constraints in spatial domain, we subtend 98.76% of the
frequency-wise Gaussian energy into the valid signal zone
to avoid distortion, getting the constraints in frequency do-



α Subtended Energy Accuracy

1.0 68.27% 85.8
1.5 86.64% 89.0
2.0 95.45% 90.2
2.5 98.76% 90.8
3.0 99.73% 90.3
3.5 99.95% 90.0

Table 1. Ablation results of hyper-parameter α for constraining
Gabor filter parameters. When the value of α is too small, the
percentage of subtended energy is also low. This leads to a large
amount of filter energy spilling out of the effective signal zone,
which in turn negatively impacts training stability. Conversely, if
α is too large, the filter parameters may be constrained to a small
range, leading to a loss of information across certain frequencies.
Experimental results show that the optimal value for α is 2.5. This
choice strikes a balance between training stability and the avail-
ability of sufficient multi-frequency information.

mains as follows:
[W − 2.5

2πσx
,W +
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Solving Eq. 1 and Eq. 3, we get [ 5
2π(1−2W ) ,

S
5 ] and [ 5

2π ,
S
5 ]

to be the valid ranges for σx and σy respectively.

Frequency Parameter W . We further analyze the valid
range for the frequency parameter W . Due to the symmetry
of image frequencies, any W less than 0 is mirrored with its
opposite number −W , so frequency components less than
0 are not considered and the lower bound for W is set to
0. The upper bound can be derived from two constraints.
First, according to Nyquist sampling theorem, frequency
should be lower than 1/2 to avoid aliasing. Second, the
upper bound of σx should be higher than its lower bound.
Mathematically, these constraints are formulated as follows:

W < 0.5

S

5
>

5

2π (1− 2W )

(4)

Solving Eq.4, we get 2πS−25
4πS to be the upper bound and

[0, 2πS−25
4πS ] to be the valid range of W .

A.2. FPN Block in Region Selection Gate

The proposed region selection gate employs a FPN block
to generate a feature F using the intermediate features of the
CNN-based semantic branch, which is then used to assist
in selecting informative regions for texture extraction (see
Sec. 3.5 of the main paper for details). In Fig. 1, we show
the detailed structure of the FPN block. The output channel
number of all 1 × 1 convolution layers in the block is 128.
This block integrates multi-level information from different
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Figure 1. Structure of the FPN block in the proposed Region Se-
lection Gate.

Method Top-1 (%)

ResNet50 76.1

Ours (with ResNet50 backbone) 77.9
Table 2. Validation results on ImageNet.

layers. As a result, the generated F contains comprehensive
information for the effective key part localization.

A.3. Back-Propagation of Improved Semantic
Hashing.

In the proposed region selection gate, we employ the im-
proved semantic hashing technique to make the selection
operation differentiable. Specifically, for the k-th region
proposal, a standard Gaussian noise is first added to its score
sk to produce ŝk. Then two vectors are generated from ŝk,
including a binary discrete feature dk and a continuously
differentiable vector ck (see Eq. 11 of the main paper for
details). In forward-propagation, dk is used to make region
selection decisions. In back-propagation, we consider the
gradient of ck with respect to ŝk an approximation of the
gradients for updating the parameters from the discrete gate
dk. This gradient replacement operation could be realized
by dk = dk + ck − ck.detach() in PyTorch. During infer-
ence, we skip the Gaussian noise sampling step and directly
use the discrete output from its original score as the selec-
tion decision, i.e., 1

(
sk > 0

)
.

B. More Experimental Results
B.1. Experiments on ImageNet

In addition to fine-grained recognition datasets, we also
validate our method on ImageNet, which is a widely-used
dataset for general image classification. The results are pre-
sented in Table. 2. As a baseline, ResNet50 achieves Top-1
accuracy of 76.1%. By using our method with ResNet50
as the semantic branch, we obtain Top-1 of 77.9%, which
outperforms ResNet50 by 1.8%. Despite achieving higher
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Figure 2. Ablation results of the Gabor filter number.
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Figure 3. Ablation results for the number of quantization levels in
LHO.

accuracy, we observe that our method can bring greater im-
provement on fine-grained datasets than ImageNet. This
can be explained by the different types of features required
for different datasets. Specifically, the visual appearances
and semantic meanings of different categories in ImageNet
are significantly different, allowing us to classify different
classes from a global perspective without explicitly exploit-
ing local details. As a result, the high-level semantic infor-
mation captured by CNN is already sufficient to distinguish
different classes, while local detailed textures captured by
our method can be less crucial. In contrast, fine-grained
recognition datasets often include categories with very sim-
ilar visual appearances and high-level semantic meanings
(e.g., different bird species). These categories are very sim-
ilar from the global view, only having subtle differences
in some local areas. In this scenario, features from deep
CNNs are insufficient for classification due to their lack of
local detailed features and high-frequency information, as
discussed in the Introduction section of our paper. Texture
information extracted from our method can serve as an ef-
fective supplement to CNN features, significantly improv-
ing fine-grained recognition.

B.2. Ablation Study of Hyper-Parameters

In this section, we present ablation results of hyper-
parameters used in our method, including the number of
Gabor filters, the number of quantization levels in LHO,
λ in the loss function, and the size that each region is
zoomed into. Experiments in this section are conducted on
CUB-200-2011 with ResNet50 as the semantic branch. We

λ Accuracy Flops(G)

0.01 90.0 25.57
0.05 90.2 23.26
0.1 90.7 21.05
0.2 90.8 20.72
0.3 90.5 20.65
0.5 90.2 20.46
1 90.0 20.20

Table 3. Ablation results of λ in Eq. 13 of the main paper.

report the average results of 5 repeated experiments

Ablation of Gabor Filter Number The texture branch in
our approach utilizes N learnable Gabor filters to process
input regions. In Fig. 2, we present the validation results
of our method using varying numbers of learnable Gabor
filters. As shown in Fig. 2, increasing N from 32 to 128
results in an improvement in validation accuracy from 86.5
to 90.5. However, performance improvement becomes
insignificant when N exceeds 128. Therefore, we choose
N = 128 as the optimal number of Gabor filters.

Ablation for the Number of Quantization Levels. The
proposed LHO involves a step that quantizes the intensity
map into M levels in order to extract statistical information
(refer to Eq. 4 and Eq. 5 of the main paper for further
details). In Fig. 3, we present the validation results of using
different numbers of quantization levels. It is observed that
when M is greater than 7 and less than 11, the accuracy
remains stable and near 90.5. Conversely, when M is too
small, the quantization is coarse, resulting in less effective
statistical feature extraction and lower validation accuracy.
Furthermore, when M is too large, overfitting may occur
to hinder the model’s effectiveness. Based on experimental
results, we chose 8 as the setting for M . It is worth noting
that our proposed method consistently outperforms the
baseline ResNet50 significantly when M ranges from 3
to 13, thus demonstrating the high effectiveness of our
approach.

Ablation of λ in Loss Function. As shown in Eq. 13
of the main paper, we use a hyper-parameter λ to control
the trade-off between the two loss items. In Table. 3, we
present the validation accuracy and average flops when λ is
set to different values. The fluctuation of accuracy is less
than 0.8 when λ varies from 0.01 to 1, showing that our
method is non-sensitive to the choice of hyper-parameter λ.

Ablation of Size that Each Region is zoomed in. Each of
the selected regions is zoomed into the size S × S before
being feeding into the texture branch for feature extraction.
In Fig. 4, we show the validation accuracy when setting
S to different values. The accuracy keeps stable when S
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Figure 4. Ablation results for S indicating the size that each region
is zoomed into.
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Table 4. Ablation results of different divisions for the low-
frequency interval and high-frequency interval. uw = 2πS−25

4πS

denotes the upper bound of frequency parameter W .

Low-frequency Filters High-frequency Filters Accuracy

N
5

4N
5 89.8

N
4

3N
4 90.3

N
3

2N
3 90.8

N
2

N
2 90.8

2N
3

N
3 90.7

3N
4

N
4 90.0

4N
5

N
5 89.4

Table 5. Ablation results of different amount allocations for the
low-frequency filters and high-frequency filters.

is greater than or equal to 112. Setting a smaller value for
S results in a reduced input size for the texture branch and
lower computational costs. Thus, we choose 112 to be the
setting of S.

B.3. Ablation of High Frequency Enhancement
Strategies.

To alleviate the frequency-bias problem and enhance the
high-frequency texture extraction capability of Gabor fil-
ters, we propose a high frequency enhancement strategy
by setting two value intervals for frequency parameter W :
[0, 2πS−25

8πS ] and [ 2πS−25
8πS , 2πS−25

4πS ], which are equally di-
vided from the valid range [0, 2πS−25

4πS ] of W . We then con-
strain W of N/2 Gabor filters to fall between [0, 2πS−25

8πS ]

and the other N/2 filters to fall between [ 2πS−25
8πS , 2πS−25

4πS ],
such that they serve as the low-frequency expert and high-
frequency expert respectively. In Table. 4, we present
the results obtained from applying different strategies with
varying divisions for low-frequency and high-frequency in-
tervals. We denote the upper bound of W as uw, which
equals 2πS−25

4πS . In Table. 5, we present the results of

Figure 5. Visualization of selected regions for texture extraction.
The selected regions are marked by the red bounding boxes.

varying amounts of allocations for low-frequency and high-
frequency filters. From the results in both tables, it can
be observed that the performance remains stable when the
division ranges from uw

4 to 2uw

3 and the amount of low-
frequency filters ranges from N

3 to 2N
3 . The results demon-

strate that our proposed method is not sensitive to these spe-
cific settings.

C. More Visualization Results
C.1. Visualization of Selected Regions

In Fig. 5, we present some visualization results of the
selected regions for texture extraction. These regions are
marked by the red bounding boxes. The selected regions
contain informative texture features that are difficult to be
extracted by the vanilla CNNs. Using the proposed texture
branch, we can extract effective texture features from these
regions to facilitate fine-grained recognition.

C.2. Visualization for the Output of Gabor Filters

In Fig. 4 of the main paper, we have provided some visu-
alization results of the outputs obtained from learned Gabor
filters. In Fig. 8, we present more visualization results.
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Figure 6. Percentage of images with different numbers of selected
regions.

More specifically, Fig. 8 (c) and Fig. 8 (d) show the aver-
age output of all high-frequency and low-frequency Gabor
filters, respectively. As can be observed, the high-frequency
filters primarily capture information of undulating areas
such as speckles and ripples, whereas the low-frequency fil-
ters primarily capture information related to smooth chang-
ing areas. Both kinds of information are critical for recogni-
tion. By exploiting sufficient and balanced multi-frequency
features through the carefully-designed learnable Gabor fil-
ters, our method can leverage comprehensive information
for effective fine-grained recognition.

D. Statistical Analysis for the Number of Se-
lected Regions.

Fig. 6 displays the percentage of images with various
numbers of selected regions for texture extraction. The re-
sults indicate that, in general, only a few regions are se-
lected for most images. This minimizes information redun-
dancy and reduces computation costs. Specifically, 35% of
all images have only one region selected, while 42% of all
images have two regions selected for feature extraction. It
is worth noting that a very small percentage of images have
no regions selected for texture extraction. Fig. 7 illustrates
two examples of such images. Typically, these images do
not contain significant texture information that can facili-
tate recognition due to the low image quality or the category
properties. Therefore, no region is selected for additional
texture extraction.
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Figure 7. Two image examples that have no region to be selected
for texture extraction.
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Figure 8. Visualization of output from Gabor filters. (a), (b), (c) and (d) present the original images, the selected regions, average output of
all high-frequency and low-frequency Gabor filters, respectively.


