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This paper proposes LinkGAN that explicitly links some
latent axes to a region of an image or a semantic by utilizing
an easy yet powerful regularizer. In this supplementary ma-
terial, we first give the implementation details of our method
in Sec. 1. Second, more results are given in Sec. 2, including
comparisons with other methods and more quantitative and
qualitative results of our methods. Third, we give an
additional ablation study in Sec. 3 besides the one offered in
the main text, i.e., the problem of image inconsistency after
resampling. Fourth, we give some discussions in Sec. 4.

1. Implementation Details
We use the official Pytorch implementation of Style-

GAN2 [5] and official Pytorch implementation of EG3D [1]
to validate our method. We keep all the parameters un-
touched except our newly added regularizer during training.
We followed the original codebase to compute FID, and for
the masked MSE, we calculated it on 10,000 images for
each edit. The update frequency of our lazy regularization is
8. For how many axes we use to control the specific region,
we list below: 1). For small regions, we use 64 axes, such as
the eye, nose, mouth, and ear region on FFHQ or AFHQ. 2).
For the larger region, such as the left region of the human
face and the bottom part of the church in Fig.3 of the main
text, we use 128 axes. Also, for linking the whole image
of Fig.5 in the main text along with two ( Fig. 5, Fig. 7)
in this Supplementary Material, each part has a size of 128
since we evenly split the latent space. 3). When the partition
size becomes bigger, such as half of the image, we use 256
axes, and for the semantic control (church, sky, and car) in
Fig.4 of the main text, we use 256 axes as well. For the
loss weight λ1 and λ2, we list as below: 1). For the latent
segment with 64 axes, we set λ1 equal to 0.04 and λ2 equal
to 0.01. 2). For the latent segment with 128 axes, we set
λ1 equal to 0.03 and λ2 equal to 0.01. 3). For the latent
segment with 256 axes, we set λ1 equal to 0.02 and λ2 equal
to 0.02. The perturbation strength α is set to one in all the
experiments.
Training time. Recall that we are just finetuning the
generator from an official checkpoint. Hence, building such
a link will not take much time, which usually takes 4 ∼ 8

hours, depending on the dataset. However, achieving a
better FID requires a longer training time. We also do an
experiment that trains a GAN from scratch on the FFHQ
dataset and then involves the regularizer when the FID is
lower than 10, in which we get similar results regarding the
controllability and the generation performance compared to
finetuning. In such cases, the train time is roughly equal to
the original StyleGAN when getting the smallest FID value
for each training.

2. More results
Comparison with existing methods. In our main text, we
give the quantitative comparison results with some existing
methods (Tab.2 in the main text). Here, we show the corre-
sponding qualitative results. Fig. 1, Fig. 2, and Fig. 3 give
the comparison results with ReSeFa [10] and StyleCLIP [6]
on eyes, nose, and mouth regions. It is noteworthy that
the ReSeFa is re-implemented on our fine-tuned model, and
the text prompt we used in StyleCLIP when editing these
three regions are: “extremely big eyes without any change
in the background”, “crooked nose without any change in
the background”, and “open mouth without any change in
the background”. From these three figures, we can see that
our method can achieve better control precision compared
to the other two. For instance, when editing the eyes, from
the heatmaps, we can observe that the outlines of the face
for ReSeFa and StyleCLIP are obviously changed. The
same phenomenon also occurs when editing the nose and
mouth regions. On the contrary, our method has negligible
changes in the regions when editing a specific region thanks
to our explicit link. For Stylespace [8], we use the code
released here to manipulate eyes, nose, and mouth. And the
results are shown in Fig. 4, we can see from this figure, the
outline of the face is also affected. Hence, both quantitative
(Tab.2 in the main text) and qualitative results demonstrate
the precise control ability of our method.
More results of our methods. We first give more quan-
titative results when our regularizer is added to different
regions and datasets. Tab. 1 and Tab. 2 report the
FID on a single region and multiple regions, respectively.
From Tab. 1, we can see that on some datasets and regions,

https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/NVlabs/eg3d
https://github.com/betterze/StyleSpace/blob/main/StyleSpace_advance.ipynb/
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Figure 1. Qualitative comparison when manipulating the eyes region with ReSeFa [10] and StyleCLIP [6]. As we can see from the
heatmaps, LinkGAN achieves more precise control within the regions of interest.

the FID slightly deteriorates (e.g., the regions on FFHQ),
and on some datasets and regions, FID is comparable, even
lower than without adding our regularizer (e.g., FFHQ on

EG3D). We believe that a higher FID is caused by the loss
of diversity because our model requires the output image
to be realistic before and after local editing (i.e., through
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Figure 2. Qualitative comparison when manipulating the nose region with ReSeFa [10] and StyleCLIP [6]. As we can see from the
heatmaps, LinkGAN achieves more precise control within the regions of interest.

partially resampling the latent code). Such a hypothesis
can be confirmed, to some degree, by the higher precision
(i.e., image quality) and lower recall (i.e., diversity) shown

in Tab. 3. When more regions are linked, FID further
deteriorates, as shown in Tab. 2. It is sensible that with
more constraints, more diversity will be lost.
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Figure 3. Qualitative comparison when manipulating the mouth region with ReSeFa [10] and StyleCLIP [6]. As we can see from the
heatmaps, LinkGAN achieves more precise control within the regions of interest.

Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9 show
more qualitative results on FFHQ [4], AFHQ [2], LSUN-
car, church, and bedroom [9]. The linked regions in those

figures are diverse and vary from a single fixed region
to a dynamic change one, to multiple regions, and even
to the whole images. For example, on human faces, as
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Figure 4. Qualitative results of StyleSpace [8] when manipulating on different regions along with corresponding heatmaps.

shown in Fig. 5, we can link either complicated or non-
special semantics (e.g., half of the faces, or just a cube

of background) or link multiple regions to multiple latent
fragments. Results on the other datasets (e.g., Fig. 6, Fig. 7,
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Figure 5. Linking latents to some fixed regions on human faces, which are pre-selected before training and shared by all instances.
Linked latent subspaces and regions are highlighted with the same colors, the heatmaps reflect the change of pixel values after in-region
resampling and out-region resampling. The results on the top group show linking a single region, while the results on the bottom show we
can link multiple regions.

Fig. 8) also demonstrate the success of our approach in
linkage building regarding different regions or semantics.
Also, Fig. 9 gives the results on the 3D generative model
EG3D [1] trained on AFHQ [2], which is another evidence
to demonstrate the generalization ability of our regularizer.

3. Ablation Study

Here we conduct an ablation study, which is the emer-
gence of the inconsistency after resampling. We do the
study on the eye region of AFHQ [2] dataset since it has
multiple classes, and we can observe this inconsistency
more clearly. Fig. 10 and Fig. 11 show some qualitative
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Figure 6. Linking latents to regions on cars. The regions in the top group are pre-selected before training and shared by all instances,
while the regions in the bottom group dynamically vary across instances. Linked latent subspaces and regions are highlighted with red
fragments and boxes/contours, the heatmaps reflect the change of pixel values after in-region resampling and out-region resampling. We
can see that LinkGAN can link arbitrary regions no matter whether they are fixed or dynamically vary.

results when interpolating between the resampled part and
the original latent part. As we can see from these two
figures, the inconsistency is obvious if we directly use a
different latent code on the linked segments (i.e., the images
with one on its bottom). When we do the interpolating
with the original latent code, the inconsistency can be
alleviated, especially when we involve more than half of

the content of the original latent code. For instance, in
the last row of Fig. 10, when the color of the resampled
cat is different from the original one, the resulting image
shows severe inconsistency. When we mix some content
from the original latent code, the inconsistency is relieved.
Hence, interpolation is an effective way to remedy this
inconsistency.
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Figure 7. Linking latents to regions on church. The regions in the top group are pre-selected before training and shared by all instances,
while the regions in the middle group dynamically vary across instances, and the bottom group shows we can link all the image regions to
the latent space. Linked latent subspaces and regions are highlighted with different colors, the heatmaps reflect the change of pixel values
after in-region resampling and out-region resampling. We can see that LinkGAN can link arbitrary regions no matter whether they are
fixed, or dynamically vary, or even for the whole images.

Another way to alleviate this inconsistency we explored
is using the discriminator on the perturbed images. Namely,
when finetuning, we could involve the discriminator in

those perturbed images to hinder the generator from syn-
thesizing those inconsistency perturbed images. We can
see from the second column of Fig. 10 and Fig. 11, which
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Figure 8. Linking latents to regions on bedroom. The regions in the top group are pre-selected before training and shared by all instances,
while the regions in the bottom group dynamically vary across instances. Linked latent subspaces and regions are highlighted with red
fragments and boxes/contours, the heatmaps reflect the change of pixel values after in-region resampling and out-region resampling. We
can see that LinkGAN can link arbitrary regions no matter whether they are fixed or dynamically vary.

give a clear comparison. For instance, in Fig. 10 we can see some edges of the rectangle in the eye region
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Figure 9. Controllability on 3D-aware generative model, i.e., EG3D [1], under the cases of eyes, left ear, and right ear. We find that
LinkGAN is well compatible with 3D-aware image synthesis and allows controlling both the appearance and the underlying geometry.

Table 1. Performance change after introducing our proposed regularizer into 2D and 3D baselines on a single region on different datasets,
where the synthesis quality slightly drops but the controllability significantly improves.

Model StyleGAN [5] EG3D [1]

Dataset FFHQ AFHQ Church Car Bedroom FFHQ

Region Left Nose Mouth Eyes Ear Top Left Sky Bottom Left Car Top Bottom Nose Mouth

w/o Linking 3.98 8.44 3.82 2.95 3.01 4.28

LinkGAN (Ours) 5.54 5.14 5.11 10.52 9.85 4.27 4.61 4.40 2.88 3.07 2.93 3.49 3.72 4.17 4.21

clearly, even the replaced content is aligned. Instead, we
can get much smoother resample results when involving

the discriminator. For example, the edge of the rectangle
is disappeared, even when the resampled content is not



Table 2. Performance change after introducing our proposed
regularizer on StyleGAN [5] on multiple regions on different
datasets. For FFHQ, we report links to two, three, and four
regions, and for AFHQ and Church, we give the results of linking
four regions (i.e., the whole image is linked).

Dataset FFHQ AFHQ Church

w/o Linking 3.98 8.44 3.82

LinkGAN 5.91 6.12 6.28 12.38 4.77

Original Resample
1.0 0.75 0.50 0.25

Figure 10. Ablation study on AFHQ [2] using different inter-
polation strength. The number under each column means the
interpolation strength, e.g., 1 means the content in the eyes region
is totally from resampled latent code. In contrast, 0.25 means
the content combines 0.75 original latent code and 0.25 of the
resampled one. During training, the discriminator is not involved
in the perturbed images.

well-aligned. Hence, involving a discriminator is another
effective way to alleviate inconsistency.

4. Discussion and Conclusion
After linking an arbitrary region to some latent axes with

the size of n, any perturbation with randomly sampled n
dimension vector on the linked subspace results in the con-
tent change only in the linked image region, which can be
viewed as a local semantic direction since it only influences
the connected region. However, some of the sampled latent
vectors can not generate realistic manipulation, and some
can (i.e., identical to the inconsistency phenomenon after re-
sampling). Hence, we need to verify whether the randomly
sampled vector can produce a meaningful manipulation
posteriorly, just like other unsupervised methods [3, 7].

Original Resample
1.0 0.75 0.50 0.25

Figure 11. Ablation study on AFHQ [2] using different inter-
polation strength. The number under each column means the
interpolation strength, e.g., 1 means the content in the eyes region
is totally from resampled latent code. In contrast, 0.25 means
the content combines 0.75 original latent code and 0.25 of the
resampled one. During training, the discriminator is involved in
the perturbed images.

5. Ethical Considerations
LinkGAN can benefit vision and graphics applications,

such as animation and content creation. However, it also
poses a threat because generative models can be misused
for DeepFake-related applications, e.g., human face editing,
and talking head generation. We hope that DeepFake
detection algorithms can be developed to avoid such mis-
use.
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