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Abstract

In the supplementary material, we provide more qualita-
tive results of BEV map segmentation and uncertainty quan-
tification, as well as additional analysis on failure cases in
Sec. 1. In addition, we provide model architecture details
in Sec. 2. The video ”MapPrior.mp4” briefly introduces
our task, proposed solution, and compares our results with
baseline models.

1. Additional Qualitative Results

1.1. Map Segmentation as Generation

We provide additional Qualitative results for BEV map
segmentation in Fig. 1 2 3 4. The figures show that our
model consistently generates results with better accuracy
and realism than the baseline. For instance, the fourth row
of Fig. 1 demonstrates our approach preserves a realistic
layout of a complicated multi-way intersection, with straight
and complete lane boundaries, well-structured cross-walks
as well as complete sidewalks, while the baseline’s estimate
is significantly noisier. In addition, the first row of Fig. 2
demonstrates our approach can complete the vertical layout
of the road at the intersection despite limited sensor input.
The generated vertical layout also preserves a realistic layout
with well-structured lanes, crosswalks, and sidewalks. For
another example, the first row in Fig. 4 demonstrates our
approach generates correct and regular spacing of the lane
boundaries, as well as smoother boundaries of sidewalks and
roads than the camera baseline.

In addition, we provide more diversity and uncertainty
calibration results in Fig. 5 and 6. Fig. 5 demonstrates that
MapPrior can generate multiple diverse results, which can be
aggregated into an accurate uncertainty map. Fig. 6 shows
that MapPrior’s uncertainty map aligns better with the error
map in different scenes.

1.2. Failure Cases

Despite the overall improved IoU score in the benchmark,
MapPrior can have a lower IoU score than the baseline model
in certain cases. For example, in Fig. 7, there is a compli-

cated layout distant from the ego car. In such cases, pre-
dictive models tend to make empty predictions. In contrast,
MapPrior makes a realistic generation of possible traffic lay-
outs. However, this may lead to significant false positives
and a lower IoU score than an empty layout prediction. The
better-calibrated confidence score that MapPrior provides
should help the downstream planner module be aware of the
uncertain areas in this situation.

2. Model Architecture Details
Predictive Stage In the predictive stage, we are using
BEVFusion[6], with an unchanged model architecture. BEV-
Fusion uses Swin-T[5] as the image backbone. It then ap-
plies FPN to fuse multi-scale camera features to produce
a feature map of 1/8 input size. It downsamples camera
images to 256×704. For the LiDAR backbone, BEVFusion
adopts VoxelNet, using a voxel size of 0.1m. As a final
step, BEVFusion uses a convolutional segmentation head to
predict the BEV map.

2.1. Auto-encoder

We modified the model architecture from VQGAN[1]. To
make sure our input and output resolution of the BEV map
is 200× 200, and the latent space resolution is 12× 12, we
adjust the padding strategy in the auto-encoder model.

Encoder The encoder contains an input convolution layer
followed by five downsampling blocks. Each downsampling
block contains two res-net blocks. After downsampling, the
encoder has two middle res-net blocks, one middle attention
block, and one output convolution layer. We show detailed
model architecture in Tab. 1

Codebook The codebook has 1024 different tokens, each
of which is a 256-dimensional feature vector. Empirically we
find this size trade-offs well between the generator’s capacity
and inference speed.

Decoder The decoder has a similar structure as the en-
coder. It contains an input convolution layer, two res-net
blocks, and one attention layer before the upsampling blocks.
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Figure 1: Additional results of BEV map segmentation on nuScenes
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Figure 2: Additional Lidar results of BEV map segmentation on nuScenes, continued
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Figure 3: Additional Camera results of BEV map segmentation on nuScenes
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Figure 4: Additional Camera results of BEV map segmentation on nuScenes, continued



Table 1: Architecture for Encoder

layers parameters
input Conv2d in ch:6, out ch: 128, kernel: 3x3, stride: 1, pad: 1

downsample block 1
ResnetBlock in ch:128, out ch: 128
ResnetBlock in ch:128, out ch: 128

Downsample(Conv2d) in ch:128, out ch: 128,kernel:3x3, stride:2, padding=((0,1,0,1),val=0)

downsample block 2
ResnetBlock in ch:128, out ch: 128
ResnetBlock in ch:128, out ch: 128

Downsample(Conv2d) in ch:128, out ch: 128,kernel:3x3, stride:2, padding=((0,1,0,1),val=0)

downsample block 3
ResnetBlock in ch:128, out ch: 256
ResnetBlock in ch:256, out ch: 256

Downsample(Conv2d) in ch:256, out ch: 256,kernel:3x3, stride:2, padding=((0,1,0,1),val=0)

downsample block 4
ResnetBlock in ch:256, out ch: 256
ResnetBlock in ch:256, out ch: 256

Downsample(Conv2d) in ch:256, out ch: 256,kernel:3x3, stride:2, padding=((0,1,0,1),val=0)

downsample block 5 ResnetBlock in ch:256, out ch: 512
ResnetBlock in ch:256, out ch: 256

middle
ResnetBlock in ch:512, out ch: 512
AttnBlock in ch:512

ResnetBlock in ch:512, out ch: 512

end
Normalize GroupNorm,num groups=32, num channels=512
Activation x*sigmoid(x)

Conv2d in ch:512, out ch: 256, kernel: 3x3, stride: 1, pad: 1



It then includes five upsampling blocks, each containing
three res-net blocks. Finally, the decoder applies an output
convolution layer. We show the detailed model architecture
in Tab. 2

Discriminator Following VQGAN, we define a 3-layer
PatchGAN discriminator as in Pix2Pix [3]. The discrimina-
tion takes the reconstructed output or the ground truth BEV
map as input and outputs a prediction map to discriminate
the reconstructed map from ground truth. It includes one
input convolution layer using leaky ReLU as activation. It
then includes three convolution layers with batch norm as
normalization and leaky ReLU as activation. It finally con-
tains an output convolution layer to output a one-channel
prediction map.

2.2. Latent Space Transformer

The latent space transformer consists of a GPT trans-
former and a BEV feature extractor. The GPT transformer
contains token embedding, feature embedding, and posi-
tional embedding. The token embedding is a learnable fea-
ture vector for each code in the codebook, and the positional
embedding is a learnable feature vector for every position.
The feature embedding is the output of the BEV feature
extractor. The final embedding is the token embedding con-
catenated with feature embedding and then encoded with
a positional embedding. The final embedding is then fed
into 24 attention blocks, and each consists of one vanilla
multi-head masked self-attention layer with 16 heads, three
mlp layers, and layer norm. As in GPT, a causal mask en-
sures that attention is only applied to the past in the input
sequence.

We present the detailed parameter of GPT in Tab. 3. The
BEV feature extractor shares a similar architecture as the
encoder. We present the detailed architecture in Tab. 4.

3. Additional Quantitative Results
3.1. Expected calibration error clarification

We calculated the expected calibration error (ECE) fol-
lowing the method proposed in ”Verified Uncertainty Cali-
bration” [4] (Eq. 1). In addition, to provide a comprehensive
understanding, we also compute the original ECE score
following Guo et al. [2]. Under this metric, our method,
MapPrior-L still significantly outperforms the strongest base-
line, with scores of 0.021 for MapPrior-L and 0.066 for
BEVFusion-L.
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Table 2: Architecture for Decoder

layers parameters
input Conv2d in ch:256, out ch: 512, kernel: 3x3, stride: 1, pad: 1

middle
ResnetBlock in ch:512, out ch: 512
AttnBlock in ch:512

ResnetBlock in ch:512, out ch: 512

upsample block 1
ResnetBlock in ch:512, out ch: 256
ResnetBlock in ch:256, out ch: 256
ResnetBlock in ch:256, out ch: 256

upsample block 2

ResnetBlock in ch:256, out ch: 256
ResnetBlock in ch:256, out ch: 256
ResnetBlock in ch:256, out ch: 256

Upsample(nearest interpolate) scale factor=2.0
Conv2d in ch:256, out ch: 256,kernel=3x3,stride=1,padding=1)

upsample block 3

ResnetBlock in ch:256, out ch: 256
ResnetBlock in ch:256, out ch: 256
ResnetBlock in ch:256, out ch: 256

Upsample(nearest interpolate) scale factor=2.0
Conv2d in ch:256, out ch: 256,kernel=3x3,stride=1,padding=1)

upsample block 4

ResnetBlock in ch:256, out ch: 128
ResnetBlock in ch:128, out ch: 128
ResnetBlock in ch:128, out ch: 128

Upsample(nearest interpolate) scale factor=2.0
Conv2d in ch:128, out ch: 128,kernel=3x3,stride=1,padding=1)

upsample block 5

ResnetBlock in ch:128, out ch: 128
ResnetBlock in ch:128, out ch: 128
ResnetBlock in ch:128, out ch: 128

ConvTranspose2d in ch:128, out ch: 128, kennel:3x3,stride = 2

end Normalize GroupNorm,num groups=32, num channels=512
Conv2d in ch:128, out ch: 6, kernel: 3x3, stride: 1, pad: 1

Table 3: Architecture for Transformer

parameters value
vocab size 1024

block size(context size) 512
n layer 24
n head 16
n embd 1024



Table 4: Architecture for BEV Feature Extarctor

layers parameters
input Conv2d in ch:80/256, out ch: 128, kernel: 3x3, stride: 1, pad: 1

downsample block 1
ResnetBlock in ch:128, out ch: 128
ResnetBlock in ch:128, out ch: 128

Downsample(Conv2d) in ch:128, out ch: 128,kernel:3x3, stride:2, padding=((0,1,0,1),val=0)

downsample block 2
ResnetBlock in ch:128, out ch: 128
ResnetBlock in ch:128, out ch: 128

Downsample(Conv2d) in ch:128, out ch: 128,kernel:3x3, stride:2, padding=((0,1,0,1),val=0)

downsample block 3
ResnetBlock in ch:128, out ch: 256
ResnetBlock in ch:256, out ch: 256

Downsample(Conv2d) in ch:256, out ch: 256,kernel:3x3, stride:2, padding=((0,1,0,1),val=0)

downsample block 4 ResnetBlock in ch:256, out ch: 512
ResnetBlock in ch:256, out ch: 256

middle
ResnetBlock in ch:512, out ch: 512
AttnBlock in ch:512

ResnetBlock in ch:512, out ch: 512

end
Normalize GroupNorm,num groups=32, num channels=512
Activation x*sigmoid(x)

Conv2d in ch:512, out ch: 256, kernel: 3x3, stride: 1, pad: 1
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Figure 5: Additional Qualitative results of diversity on NuScenes.



LiDAR
Prediction Uncertainty Error Map Prediction Uncertainty Error Map

BEVFusion-L MapPrior

Figure 6: Additional results on uncertainty and error map comparison
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Figure 7: Failure Cases


