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1. Related Work
1.1. Feature Selection

The proposed prior refinement module essentially con-
ducts feature selection along channel dimension, which is
a widely acknowledged dimensionality reduction process.
In this section, we provide a comprehensive review of the
feature selection and its connection with our approach.

Feature selection is employed to minimize the impact of
dimensionality on datasets by efficiently collecting a subset
of features that accurately describe or define the data [37,
1, 51, 44]. The primary objective of feature selection is
to construct a small yet comprehensive subset of features
that capture the essential aspects of the input data [16, 15,
47]. Feature selection helps models avoid over-fitting and
simplify computation for both training and inference [23,
4]. It also boosts models’ interpretability by refining task-
specific features. In machine learning, the reduction of the
dimensionality and consequently feature selection is one of
the most common techniques of noise elimination [12, 34].

Traditional selection methods rely on statistical mea-
sures to select features [48]. These methods are indepen-
dent of the learning algorithm and require less computa-
tion. Classical statistical criteria, such as variance thresh-
old, Fisher score, Pearson’s correlation [8], Linear Discrim-
inant Analysis (LDA) [5], Chi-square [26], and Mutual In-
formation [17, 38], are commonly used to assess the signif-
icance of features.

In deep neural networks, channel pruning is an es-
sential technique for memory size and computation effi-
ciency [34, 9, 3, 41]. Pruning removes redundant parame-
ters or neurons that do not significantly contribute to the ac-
curacy of results. This condition may arise when the weight

coefficients are close to zero or are replicated. Traditional
pruning approaches such as least absolute shrinkage and se-
lection operator (LASSO) [42, 45], Ridge regression [45],
and Optimal Brain Damage (OBD) [28] are widely utilized.
In addition, recent efforts also incorporate channel pruning
into various visual or language encoders [35, 22, 29, 50].
Compared with them, the proposed adaptive prior refine-
ment approach considers the consistency between vision
and language representations to reduce redundancy, and
adaptively refine task-aware features for different down-
stream domains. It not only reduces computation and pa-
rameters, but also improves few-shot performance.

1.2. Vision-Language Models

Vision-language (VL) pre-training has provided founda-
tion models for various cross-modality tasks [31, 30]. Ex-
isting vision-language models (VLMs) trained on web-scale
datasets manifest superior transferability for diverse down-
stream tasks [11, 14, 2,49, 7, 32, 36, 33, 24, 33]. For exam-
ple, BLIP trains a multimodal encoder-decoder network for
text-image retrieval, visual question answering, and other
cross-modal generation tasks [31]. SLIP integrates self-
supervision into VL contrastive learning which guarantees
an efficient pre-training [36]. Flamingo reinforces VLMs’
few-shot capability to cross-modal tasks via only a few in-
put/output examples [2]. And the recently proposed BLIP-
2 efficiently leverages the pre-trained VLMs and conducts
generation tasks via a cross-modal transformer [30]. These
methods significantly improve the generalization ability of
pre-trained models on downstream tasks through large-scale
contrastive training. The alignment between VL data has
become a time-tested principle to supervise VL training.



After training, the off-the-shelf models exhibit remarkable
feature extraction capability. The representative among
them is CLIP [40].

After being trained on 400M internet-sourced image-text
pairs, CLIP exhibits outstanding capability to align vision-
language representations. And it has been widely adopted
and applied to classification [52, 18, 46], visual ground-
ing [20, 25], image retrieval [6, 27], semantic segmenta-
tion [19, 43], and other tasks with only limited adapting. In
this work, we propose a new few-shot framework based on
CLIP and it can also be extended to other VLMs.

2. Methods

In this section, we give a detailed derivation for the opti-

mization objective S in Equation 5 and Equation 6 of the
k.th

main text. The average inter-class similarity of the
channel S}, is formulated as
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where we use the same notation as the main text.

After that, we visualize the inter-class similarity and
variance criteria for all 1024 channels of the ResNet-50 [21]
backbone in Figure 1. We conduct the statistic on Ima-
geNet [13] with the textual representation. We set the bal-
ance factor ) in Equation 8 of the main paper to 0.7. We sort
the channels in ascending order according to the blended
criterion J. From the figure, if the first Q = 500 chan-
nels are selected, we observe that the inter-class similari-
ties are small and the variances are large. In addition, we
also observe partial channels (around & = 900) are not acti-
vated because both their Sy, and V}, are 0. The visualization
demonstrates that the proposed criteria effectively identify
redundant channels.

More similarity maps are presented in Figure 2. From
the examples, we observe that the refined channels mainly
contain information about the objective class, while the rest
channels include more ambient noise and redundancy.
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Figure 1: Visualization of Similarity and Variance Cri-
teria on 1024 Channels of ResNet-50 encoder.

3. Experiments

Settings. For prior refinement, the number of channels se-
lected, @), of each dataset is shown in Table 1. For the
textual prompt, we follow [46] to ensemble CuPL [39] and
template-based prompt [40]. We present the language com-
mand for GPT-3 [10] in CuPL prompt generation in Table 2
and 3. The template-based prompt is listed in Table 4.

Channels Number on Vit-B/16. We also verify our chan-
nel refinement process on APE with ViT-B/16 backbone as
shown in Figure 3 (a), which outputs 512-dimensional rep-
resentation. This demonstrates the validity of prior refine-
ment in other backbones. For 512-dimensional features, our
refinement can also filter out redundancy and noise.

Comparison with PCA. Finally, we compare the pro-
posed significant channel refinement approach with prin-
ciple component analysis (PCA) in Figure 3 (b), both of
which are dimensionality reduction methods. We con-
duct this experiment on ImageNet with ResNet-50 back-
bone. We extract = 500 principal components for the
PCA-based approach from the textual representations, sim-
ilar to our refinement approach. We implement this un-
der both training-free and training-required settings. For
training-free variants (denoted as “PCA”), we utilize the
transformed representations via PCA to substitute the re-
fined version in APE. For the training-required version (de-
noted as “PCA-T”), we only optimize the principal com-
ponents for few-shot learning. The results are presented in
Figure 3 (b). We observe that our approach outperforms
PCA-based ones in both training-free and training modes.
We suggest that this is connected to the change of basis in



(d) Other Feature Channels

Figure 2: More Examples of the Similarity Map. We utilize ResNet-50 [21] visual encoder and refine 512 feature channels
from 1024 ones. These examples are collected from ImageNet validation set [13].
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Figure 3: More Ablation Study for Prior Refinement.

Dataset ImageNet  Caltech-101 DTD EuroSAT FGVC
Q 500 900 800 800 900

Food101  Flowers102 Pets Cars SUN397 UCF101
800 800 800 500 800 800

Table 1: Refined Channels Number () for each dataset.
The backbone is ResNet-50 [21] which extracts 1024-
dimensional representations.

PCA algorithm—unexpected biases are introduced to the
transformed representations, which is inimical for predic-
tion. As a comparison, our refinement method completely
inherits the knowledge from CLIP without transformation,
suitable for similarity-based vision-language schemes.

Different Vision-Language Models. We verify our ap-
proach on BLIP [31] and SLIP [36], two pre-trained vision-
language models. As there are no public results for exist-
ing few-shot methods on BLIP and SLIP, we first repro-
duce their results with official codes on the 11 datasets, and
compare the average accuracy for training-free and training-
required classification. As shown in Figure 4 and Figure 5,
on the two pre-trained models, our APE and APE-T exhibit
superior performance and generalization capacity.

Compared to Feature Selection Methods. The proposed
Prior Refinement is superior to the sequential feature selec-
tion methods. The sequential selection methods highly rely
on the selection order while APE does not. We calculate two
metrics (similarity and variance) in parallel for each feature
channel, and simultaneously select top-Q channels based on
the metrics, indicating our method is permutation-invariant
to different channels. As we simultaneously and globally
select the Q channels, rather than sequentially select, our
method is expected to attain an approximate global opti-
mal solution. We also implement forward (FS) and back-
ward (BS) sequential selection algorithms with our metrics
in Fig 6. We adopt 10 random seeds and report the aver-
age accuracy with standard deviation (shaded area) on Ima-
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Figure 4: APE and APE-T on BLIP.
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Figure 5: APE and APE-T on SLIP.
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Figure 6: Comparison with Sequential Feature Selection
Methods.

geNet. As shown, our method performs better than sequen-
tial selection methods.



Dataset GPT-3 Commands

ImageNet “Describe what a {} looks like”
“How can you identify {}2”
“What does {} look like?”
“Describe an image from the internet of a {}”
“A caption of an image of {}:”

Caltech101 “Describe what a {} looks like”
“What does a {} look like”
“Describe a photo of a {}”

DTD “What does a {} material look like?”
“What does a {} surface look like?”
“What does a {} texture look like?”
“What does a {} object look like?”
“What does a {} thing look like?”
“What does a {} pattern look like?”
EuroSAT “Describe an aerial satellite view of {}”

“How does a satellite photo of a {} look like”
“Visually describe a satellite view of a {}”

FGVCAircraft “Describe a {} aircraft”

Flowers102 “What does a {} flower look like”
“Describe the appearance of a {}”
“A caption of an image of {}”
“Visually describe a {}, a type of flower”

Food101 “Describe what a {} looks like”
“Visually describe a {}”
“How can you tell the food in the photo is a {}?”

OxfordPets “Describe what a {} pet looks like”
“Visually describe a {}, a type of pet”

StanfordCars ~ “How can you identify a {}”
“Description of a {}, a type of car”
“A caption of a photo of a {}:”
“What are the primary characteristics of a {}?”
“Description of the exterior of a {}”
“What are the characteristics of a {}, a car?”
“Describe an image from the internet of a {}”
“What does a {} look like?”
“Describe what a {}, a type of car, looks like”

SUN397 “Describe what a {} looks like”
“How can you identify a {}?”
“Describe a photo of a {}”

UCF101 “What does a person doing {} look like”
“Describe the process of {}”
“How does a person {}”

Table 2: GPT-3 Commands Used in CuPL (1/2).



Dataset GPT-3 Commands

ImageNet-V2 “Describe what a {} looks like”
“How can you identify {}?2”
“What does {} look like?”
“Describe an image from the internet of a {}”
“A caption of an image of {}:”

ImageNet-Sketch “Describe what a {} looks like”
“How can you identify {}?”
“What does {} look like?”
“Describe an image from the internet of a {}”
“A caption of an image of {}:”

Table 3: GPT-3 Commands Used in CuPL (2/2).



Dataset Template Prompt
ImageNet “itap of a {}.”

“a bad photo of the {}.”

“a origami {}.”

“a photo of the large {}.”

“a {} in a video game.”

“art of the {}.”

“a photo of the small {}.”
Caltech101 “a photo of a {}.”
DTD “{} texture.”
EuroSAT “a centered satellite photo of {}.”
FGVCAircraft “a photo of a {}, a type of aircraft.”
Flowers102 “a photo of a {}, a type of flower.”
Food101 “a photo of {}, a type of food.”
OxfordPets “a photo of a {}, a type of pet.”
StanfordCars “a photo of a {}.”
SUN397 “Describe what a {} looks like”
UCF101 “a photo of a person doing {}.”

ImageNet-V2

“itap of a {}.”

“a bad photo of the {}.”
“a origami {}.”

“a photo of the large {}.”
“a {} in a video game.”
“art of the {}.”

“a photo of the small {}.”

ImageNet-Sketch

“itap of a {}.”

“a bad photo of the {}.”
“a origami {}.”

“a photo of the large {}.”
“a {} in a video game.”
“art of the {}.”

“a photo of the small {}.”

Table 4: Template-based Prompt for each dataset.
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