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A. Justification from Generalization Error
We further analyze the generalization error bound of our

ProGrad. We define the expected risk R(·) and empirical
risk R̂(·) of a classifier f on domain D as

R(f) = E(X,Y )∼D[ℓ(f(X), Y )], R̂(f) =
1

N

N∑
i=1

ℓ(f(Xi), Yi)

(1)
where ℓ(f(X), Y ) denotes the cross-entropy and N is the
volume of training data. We are interested in the downstream
domain Dd and pre-trained domain Dp, respectively. 1

Let F be a function class, the conventional fine-tune
model f̂coop is trained on Dd by

f̂coop = argmin
f∈F

R̂d(f). (2)

The zero-shot CLIP model f̂p is considered to be trained on
Dp by

f̂p = argmin
f∈F

R̂p(f). (3)

For the implementation of ProGrad, we initialize the model
f̂prograd using the pre-trained model f̂p. We regularize each
training step not to increase the KL divergence between
the predictions of f̂prograd and f̂p. In this way, f̂prograd can
keep the optimal value of the pre-trained domain Lkl when
optimizing the empirical risk on the downstream domain.
The model f̂prograd learned by our ProGrad can be viewed
as optimizing the empirical risk on both domains:

f̂prograd = argmin
f∈F

R̂(d+p)(f) = argmin
f∈F

R̂d(f) + R̂p(f).

(4)
Based on Theorem 4.1 of [4], assuming that the neural

network has L layers with parameters matrices W1, ...,WL,
and their Frobenius norm are at most M1, ...,ML and the
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1The pre-trained dataset includes samples from diverse classes. Here, we

only consider the pre-trained data belonging to the classes of downstream
task.

activation functions are 1-Lispschitz continuous, positive-
homogeneous, and applied element-wise. The output of
the neural network is the softmax function that predicts c
classes. Let F be a function class with the range [a, b].
Distribution is such that ∥x∥ ≤ B. Let XNd

1 = {x(d)
n }Nd

n=1

and X
Np

1 = {x(p)
n }Np

n=1 be two set of i.i.d. samples drawn
from the downstream domain Dd and the pre-trained domain
Dp. Then for any ϵ > 0, we have with probability at least
1− ϵ,

Rd(f̂prograd) ≤ R̂(d+p)(f̂prograd) +
1

2
γF (D,P )+

cB
(√

2 log(2)L+ 1
)∏L

j=1 Mj√
Np

+
cB

(√
2 log(2)L+ 1

)∏L
j=1 Mj

√
Nd

+
3

2

√
(b− a) ln(4/ϵ)

2Nd

+
3

2

√
(b− a) ln(4/ϵ)

2Np

+
1

2

√
(b− a)2 ln(4/ϵ)

2

(
1

Nd
+

1

Np

)
,

(5)

where γF (D,P ) is the integral probability metric [2] that
measures the difference between the distribution of pre-
trained domain and the downstream domain. The Eq. (5)
shows that the generalization error Rd(f̂prograd) is bounded
by the empirical training risk R̂(d+p)(f̂prograd), the two do-
main gap γF (D,P ) and the estimation error that is inversely
proportional to number of training samples, i.e., Nd and
Np. The empirical training risk can be minimized to arbi-
trary small value and the estimation error that related to Np

asymptotically tends to 0 as the sample size Np tends to
infinity. Thanks to the large amount of pretrained samples
Np, we can approximate the generalization error bound for



the model learned by ProGrad as

Rd(f̂prograd) ≤

1

2
γF (S, P ) +

cB
(√

2 log(2)L+ 1
)∏L

j=1 Mj
√
Nd

+
3

2

√
(b− a) ln(4/ϵ)

2Nd
+

1

2

√
(b− a)2 ln(4/ϵ)

2

1

Nd
.

(6)

Similarly, we have the generalization error for f̂coop as

Rd(f̂coop) ≤ 2
cB

(√
2 log(2)L+ 1

)∏L
j=1 Mj

√
Nd

+ 3

√
(b− a) ln(4/ϵ)

2Nd
+

√
(b− a)2 ln(4/ϵ)

2

1

Nd
.

(7)
If the gap between the pre-trained domain Dp and the down-
stream domain Dd is very small, the γF (D,P ) will tend
to 0. Under this assumption, the estimation error bound of
Rd(f̂coop) is at least 2 times greater than Rd(f̂prograd). Con-
sidering that in few-shot setting, Nd is typically very small,
which makes our ProGrad model f̂prograd a much lower
error bound than conventional fine-tuning model f̂coop.

B. Additional Implementation Details
For ProGrad implementation, we first initialize the

learnable context vector v with the word embeddings of
the zero-shot hand-crafted prompt. Concretely, if the context
length M is 16 and the hand-crafted prompt is “a photo
of a”, which only has 4 tokens, we initialize the former 12
context vectors with zeros and the last 4 context vectors with
the word embedding of “a photo of a”. We follow the
training settings of CoOp [6]: All prompt-based models are
trained by SGD with an initial learning rate of 0.002 which
is decayed by the cosine annealing rule. During the first
epoch, we use the warm-up trick by fixing the learning rate
to 1× 10−5 to alleviate the gradient explosion. The training
epoch is set to 50 for all shots of experiments of ImageNet
dataset. For the rest 10 datasets, the training epoch is set to
50 for 1 shot, 100 for 2/4 shots and 200 for 8/16 shots. We
train all prompt-based model with batch size of 32 expect for
CoCoOp. As described in [7], CoCoOp consumes a signifi-
cant amount of GPU memory if the batch size is set larger
than one. We set the batch size to 1, following their original
setting. Our experiments are conducted on one 2080Ti GPU
for all datasets except ImageNet where we train the models
on one A100 GPU.

C. Hand-crafted Prompts
The hand-crafted prompts for 11 datasets as well as the

ImageNet variants are listed in Table 1. We select the en-

Table 1: Hand-crafted Prompts.

Dataset Hand-crafted prompt

OxfordPets “a type of pet, a photo of a {}.”
OxfordFlowers “a type of flower, a photo of a {}.”
FGVCAircraft “a type of aircraft, a photo of a {}.
DescribableTextures “a texture of {}.”
EuroSAT “a centered satellite photo of {}.”
StanfordCars “a photo of a {}.”
Food101 “a type of food, a photo of {}.”
SUN397 “a photo of a {}.”
Caltech101 “a photo of a {}.”
UCF101 “a photo of a person doing {}.”
ImageNet “a photo of a {}.”
ImageNetSketch “a photo of a {}.”
ImageNetV2 “a photo of a {}.”
ImageNetA “a photo of a {}.”
ImageNetR “a photo of a {}.”

semble prompts from CLIP [3], examples for ImageNet are
shown in Table 2.

D. Additional Experiments
D.1. Additional Few-shot Classification Results

In this section, we further provide the detailed few-shot
classification results of other learning-based fine-tuning
methods with confidence interval at 95% in Table 3 and
Table 4.
Cosine. As described in Section 4.5 of the main paper, we
plug in an additional cosine classifier on top of the visual
backbone and trained on downstream dataset.
CoOp learns the context prompt from data rather than hand-
crafted design.
CLIP-Adapter learns additional feature adapter to boost
conventional fine-tuning results.
Cosine + ProGrad employs ProGrad to the training pro-
cess of cosine classifier.
CoOp + l2 prompt reg. We further investigate whether
simply using the l2 distance between learned prompt vector
v and the word embedding vector of hand-crafted prompt
vzs as the regularization can improve few-shot performance,
i.e., Ltotal(v) = Lce(v) + α∥v − vzs∥2, where we select
α = 0.01.
CoOp + GM applies gradient matching method [5] to CoOp,
i.e., we not only project the Gd to the perpendicular direction
of Gg as the updated gradient, but also project the Gg to
the perpendicular direction of Gd as the updated gradient to
fine-tune the model alternately.
CoOp + KD. As described in Section 4.5 of the main paper,
we apply knowledge distillation loss to CoOp, i.e., Ltotal =
Lce + Lkl

ProGrad Upper Bound first optimizes a prompt with plain
cross-entropy loss on the full dataset to create Gg and then
use such gradient to implement ProGrad.



Table 2: Prompt Ensembling Examples for ImageNet.

“a bad photo of a {}.” “a photo of many {}.” “a sculpture of a {}.”
“a photo of the hard to see {}.” “a low resolution photo of the {}.”
“a rendering of a {}.” “graffiti of a {}.” “a bad photo of the {}.”
“a cropped photo of the {}.” “a tattoo of a {}.” “the embroidered {}.”
“a photo of a hard to see {}.” “a bright photo of a {}.”
“a photo of a clean {}.” “a photo of a dirty {}.”
“a dark photo of the {}.” “a drawing of a {}.”
“a photo of my {}.” “the plastic {}.” “a photo of the cool {}.”
“a close-up photo of a {}.” “a black and white photo of the {}.”
“a painting of the {}.” “a painting of a {}.”
“a pixelated photo of the {}.” “a sculpture of the {}.”
“a bright photo of the {}.” “a cropped photo of a {}.” “a plastic {}.”
“a photo of the dirty {}.” “a jpeg corrupted photo of a {}.”
“a blurry photo of the {}.” “a photo of the {}.” “a good photo of the {}.”
“a rendering of the {}.” “a {} in a video game.’ “a photo of one {}.”
“a doodle of a {}.” “a close-up photo of the {}.” “a photo of a {}.”
“the origami {}.” “the {} in a video game.’ “a sketch of a {}.”
“a doodle of the {}.” “a origami {}.” “a low resolution photo of a {}.”
“the toy {}.” “a rendition of the {}.” “a photo of the clean {}.”
“a photo of a large {}.” “a rendition of a {}.” “a photo of a nice {}.”
“a photo of a weird {}.” “a blurry photo of a {}.” “a cartoon {}.”
“art of a {}.” “a sketch of the {}.” “a embroidered {}.”
“a pixelated photo of a {}.” “itap of the {}.”
“a jpeg corrupted photo of the {}.” “a good photo of a {}.”
“a plushie {}.” “a photo of the nice {}.” “a photo of the small {}.”
“a photo of the weird {}.” “the cartoon {}.” “art of the {}.”
“a drawing of the {}.” “a photo of the large {}.”
“a black and white photo of a {}.” “the plushie {}.”
“a dark photo of a {}.” “itap of a {}.”
“graffiti of the {}.” “a toy {}.” “itap of my {}.”
“a photo of a cool {}.” “a photo of a small {}.” “a tattoo of the {}.”

For all prompt-based methods, we set the context length
M to 16 except for CoOp + l2 prompt reg. The learned
length for CoOp + l2 prompt reg needs to be equal to the
hand-crafted prompt length to compute the l2 norm, e.g.,
the M has to be 4 if the hand-crafted prompt is “a photo
of a ”. According to the average results in Table 3, we
observe that our CoOp + ProGrad still achieves the best av-
erage performance. By comparing the results of 1) Cosine
and Cosine + ProGrad; and 2) CoOp and CoOp + ProGrad,
we demonstrates both conventional “pre-train then fine-tune”
paradigm and prompt tuning paradigm can benefit from our
ProGrad. The gap between CoOp and CoOp + l2 prompt
reg demonstrates that directly regularize the learned prompt
to be not far away from the hand-crafted prompt has limited
improvement. By digging into CoOp + KD and CoOp +
GM, we find performance improvement by introducing the
general knowledge. However, their performance still under-
performs our CoOp + ProGrad. This is because 1) CoOp +
KD learns the average knowledge from two domains which
still allows the fine-tuned model to learn from the down-
stream knowledge that conflicts with the general knowledge;

2) CoOp + MD additional requires the fine-tuned model to
discards the general knowledge that is not aligned with the
downstream knowledge, as the downstream data is limited,
the inaccurate estimation of Gd will lead the model focus on
biased general knowledge.

D.2. Additional Results for Base-to-New General-
ization

Table 5 further presents the results for base-to-new gener-
alization on each of the 11 datasets.

D.3. Additional Results for Domain Generalization

Table 6 further provides the averaged accuracies with
standard deviations for domain generalization setting.

References
[1] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang,

Yongfeng Zhang, Hongsheng Li, and Yu Qiao. Clip-adapter:
Better vision-language models with feature adapters. arXiv
preprint arXiv:2110.04544, 2021. 5, 6



[2] Alfred Müller. Integral probability metrics and their gener-
ating classes of functions. Advances in Applied Probability,
29(2):429–443, 1997. 1

[3] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell,
Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021. 2

[4] Shuo Yang, Songhua Wu, Tongliang Liu, and Min Xu. Bridg-
ing the gap between few-shot and many-shot learning via dis-
tribution calibration. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021. 1

[5] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for multi-
task learning. NeurIPS, 2020. 2

[6] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Learning to prompt for vision-language models. arXiv
preprint arXiv:2109.01134, 2021. 2

[7] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Conditional prompt learning for vision-language models.
In CVPR, 2022. 2



Table 3: Accuracy (%) with standard deviation of few-shot learning on 11 datasets (Part I). The context length M is set 16 for
prompt-based methods. * indicates results copied from [1].

Method
#shots per class

1 2 4 8 16
A

ve
ra

ge

Cosine 30.50 ± 1.24 43.74 ± 1.37 53.33 ± 1.57 61.26 ± 1.45 65.00 ± 2.87
CoOp 59.44 ± 1.88 62.31 ± 1.40 66.72 ± 0.93 70.06 ± 0.53 73.48 ± 0.39
CLIP-Adapter* 61.45 64.32 67.51 70.78 74.35

Cosine + ProGrad 32.29 ± 1.12 46.14 ± 1.49 55.18 ± 1.99 62.05 ± 0.93 66.47 ± 1.69
CoOp + l2 prompt reg 60.84 ± 1.16 62.75 ± 1.18 66.85 ± 0.76 70.08 ± 0.58 72.92 ± 0.46
CoOp + GM 61.27 ± 0.96 63.23 ± 0.50 64.59 ± 0.63 66.40 ± 0.49 67.12 ± 0.29
CoOp + KD 61.52 ± 0.99 64.07 ± 0.52 66.52 ± 0.38 70.01 ± 0.31 72.01 ± 0.37
ProGrad Upper Bound 74.14 ± 0.51 74.24 ± 0.29 74.52 ± 0.52 75.20 ± 0.35 76.36 ± 0.25
ProGrad 62.61 ± 0.80 64.90 ± 0.86 68.45 ± 0.52 71.41 ± 0.49 74.28 ± 0.40

Im
ag

eN
et

Cosine 15.95 ± 0.07 26.56 ± 0.30 37.08 ± 0.29 46.18 ± 0.19 53.36 ± 0.39
CoOp 57.15 ± 1.03 57.25 ± 0.43 59.51 ± 0.25 61.59 ± 0.17 63.00 ± 0.18
CLIP-Adapter* 58.14 58.55 59.41 60.36 61.27

Cosine + ProGrad 19.21 ± 0.28 31.18 ± 0.18 42.59 ± 0.29 51.73 ± 0.18 57.65 ± 0.33
CoOp + l2 prompt reg 57.51 ± 0.22 61.27 ± 0.49 62.49 ± 0.12 62.71 ± 0.01 62.88 ± 0.09
CoOp + GM 60.41 ± 0.17 60.51 ± 0.13 60.75 ± 0.06 61.01 ± 0.14 61.44 ± 0.03
CoOp + KD 60.85 ± 0.22 61.08 ± 0.10 61.51 ± 0.07 61.67 ± 0.12 62.05 ± 0.09
ProGrad Upper Bound 61.28 ± 0.19 61.60 ± 0.14 62.42 ± 0.16 63.5 ± 0.15 64.34 ± 0.11
ProGrad 57.75 ± 0.24 59.75 ± 0.33 61.46 ± 0.07 62.54 ± 0.03 63.45 ± 0.08

C
al

te
ch

10
1

Cosine 60.76 ± 1.71 73.10 ± 1.01 81.43 ± 0.65 87.02 ± 0.60 90.60 ± 0.05
CoOp 87.40 ± 0.98 87.92 ± 1.12 89.48 ± 0.47 90.25 ± 0.18 92.00 ± 0.02
CLIP-Adapter* 88.52 89.19 91.04 91.71 93.42

Cosine + ProGrad 61.95 ± 0.12 75.24 ± 0.88 82.98 ± 0.38 88.59 ± 0.21 91.31 ± 0.19
CoOp + l2 prompt reg 87.04 ± 0.61 87.37 ± 0.78 88.82 ± 0.40 89.62 ± 0.29 91.67 ± 0.26
CoOp + GM 89.14 ± 0.15 89.37 ± 0.26 89.64 ± 0.33 89.36 ± 0.31 89.42 ± 0.13
CoOp + KD 89.06 ± 0.29 89.71 ± 0.20 90.13 ± 0.16 90.09 ± 0.30 91.39 ± 0.05
ProGrad Upper Bound 91.08 ± 0.11 91.70 ± 0.30 91.76 ± 0.52 91.84 ± 0.16 92.86 ± 0.07
ProGrad 88.68 ± 0.34 87.98 ± 0.69 89.99 ± 0.26 90.83 ± 0.07 92.17 ± 0.17

O
xf

or
dP

et
s

Cosine 26.33 ± 0.75 41.60 ± 1.93 55.29 ± 1.97 66.60 ± 0.82 66.84 ± 16.24
CoOp 86.01 ± 0.47 82.21 ± 2.12 86.63 ± 1.02 85.15 ± 1.12 87.06 ± 0.88
CLIP-Adapter* 81.44 81.57 82.69 84.13 85.31

Cosine + ProGrad 26.08 ± 0.73 40.58 ± 2.01 55.23 ± 1.44 66.78 ± 1.58 68.96 ± 14.35
CoOp + l2 prompt reg 87.55 ± 0.15 82.12 ± 2.61 84.93 ± 1.77 84.38 ± 0.75 86.28 ± 0.45
CoOp + GM 87.05 ± 0.65 87.06 ± 0.67 88.45 ± 0.45 88.35 ± 0.15 88.38 ± 0.27
CoOp + KD 87.10 ± 1.47 87.40 ± 0.60 88.56 ± 0.19 88.77 ± 0.24 89.16 ± 0.16
ProGrad Upper Bound 88.56 ± 0.30 87.82 ± 0.78 87.99 ± 0.80 88.02 ± 0.40 88.88 ± 0.31
ProGrad 88.36 ± 0.73 86.89 ± 0.42 88.04 ± 0.50 87.91 ± 0.54 89.00 ± 0.32

St
an

fo
rd

C
ar

s

Cosine 18.96 ± 0.34 33.37 ± 0.38 47.75 ± 0.38 61.30 ± 0.25 71.94 ± 0.31
CoOp 55.68 ± 1.23 58.33 ± 0.60 63.05 ± 0.09 68.37 ± 0.25 73.34 ± 0.49
CLIP-Adapter* 56.02 58.24 63.07 67.00 72.83

Cosine + ProGrad 21.13 ± 0.50 39.44 ± 0.83 54.54 ± 0.57 66.47 ± 0.14 73.41 ± 0.11
CoOp + l2 prompt reg 55.86 ± 0.66 57.69 ± 0.51 62.82 ± 0.07 66.63 ± 0.25 69.86 ± 0.44
CoOp + GM 57.37 ± 0.36 58.46 ± 0.24 59.72 ± 0.66 62.32 ± 0.59 63.87 ± 0.37
CoOp + KD 57.48 ± 1.47 59.09 ± 0.60 61.47 ± 0.19 67.73 ± 0.24 70.48 ± 0.16
ProGrad Upper Bound 70.54 ± 0.14 71.57 ± 0.16 71.66 ± 0.50 72.73 ± 0.15 75.27 ± 0.36
ProGrad 58.38 ± 0.23 61.81 ± 0.45 65.62 ± 0.43 69.29 ± 0.11 73.46 ± 0.29

Fl
ow

er
s1

02

Cosine 51.33 ± 2.77 70.06 ± 2.29 82.43 ± 1.65 91.74 ± 0.73 95.68 ± 0.22
CoOp 68.13 ± 1.74 76.68 ± 1.82 86.13 ± 0.75 91.74 ± 0.49 94.72 ± 0.34
CLIP-Adapter* 71.97 78.80 85.31 90.69 94.30

Cosine + ProGrad 52.08 ± 2.31 70.13 ± 1.90 81.09 ± 2.06 91.62 ± 0.41 93.94 ± 0.02
CoOp + l2 prompt reg 71.12 ± 0.55 80.36 ± 0.54 86.42 ± 0.33 91.58 ± 0.59 94.25 ± 0.38
CoOp + GM 67.87 ± 0.31 69.09 ± 0.49 71.69 ± 0.68 75.76 ± 0.79 78.36 ± 0.34
CoOp + KD 68.11 ± 1.47 71.02 ± 0.60 76.06 ± 0.19 84.53 ± 0.24 88.05 ± 0.16
ProGrad Upper Bound 95.29 ± 0.28 95.29 ± 0.38 95.70 ± 0.38 95.86 ± 0.37 96.52 ± 0.02
ProGrad 73.18 ± 0.73 79.77 ± 0.65 85.37 ± 0.96 91.64 ± 0.24 94.37 ± 0.24



Table 4: Accuracy (%) with confidence interval at 95% of few-shot learning on 11 datasets (Part II). The context length M is
set 16 for prompt-based methods. * indicates results copied from [1].

Method
#shots per class

1 2 4 8 16
Fo

od
10

1

Cosine 25.32 ± 0.29 41.06 ± 0.29 54.10 ± 1.06 61.88 ± 0.33 68.50 ± 0.24
CoOp 74.28 ± 1.40 72.45 ± 1.29 73.27 ± 2.07 71.67 ± 0.30 74.68 ± 0.03
CLIP-Adapter* 75.09 75.59 75.92 76.53 76.97

Cosine + ProGrad 27.19 ± 0.15 45.28 ± 0.36 58.57 ± 1.01 71.25 ± 0.29 75.61 ± 0.15
CoOp + l2 prompt reg 73.58 ± 2.20 68.89 ± 1.30 71.30 ± 0.49 72.42 ± 0.26 75.64 ± 0.33
CoOp + GM 76.23 ± 1.51 77.97 ± 0.51 78.89 ± 0.10 78.90 ± 0.15 79.07 ± 0.06
CoOp + KD 76.06 ± 1.47 77.59 ± 0.60 78.72 ± 0.19 78.38 ± 0.24 78.90 ± 0.16
ProGrad Upper Bound 79.35 ± 0.15 78.19 ± 0.25 77.67 ± 0.51 78.05 ± 0.42 78.99 ± 0.14
ProGrad 76.04 ± 0.54 74.95 ± 0.57 75.95 ± 0.27 76.65 ± 0.23 78.41 ± 0.08

FG
V

C
A

ir
cr

af
t

Cosine 12.47 ± 1.00 17.75 ± 1.35 22.00 ± 1.50 29.14 ± 0.54 36.47 ± 0.18
CoOp 9.71 ± 6.09 18.74 ± 0.48 21.78 ± 0.50 27.55 ± 0.06 31.37 ± 0.53
CLIP-Adapter* 19.63 22.27 25.62 30.48 38.72

Cosine + ProGrad 12.83 ± 0.48 17.59 ± 1.59 19.70 ± 1.62 26.34 ± 0.51 31.98 ± 0.68
CoOp + l2 prompt reg 18.01 ± 0.44 19.78 ± 0.23 22.51 ± 0.94 27.24 ± 0.38 30.55 ± 0.54
CoOp + GM 17.08 ± 0.37 19.34 ± 0.24 19.62 ± 0.40 21.07 ± 0.08 22.52 ± 0.19
CoOp + KD 17.67 ± 0.45 19.29 ± 0.15 21.21 ± 0.60 25.55 ± 0.30 28.58 ± 0.42
ProGrad Upper Bound 28.83 ± 0.09 28.97 ± 0.12 30.44 ± 0.79 31.92 ± 0.9 34.32 ± 0.16
ProGrad 18.81 ± 0.50 20.47 ± 0.90 23.32 ± 0.36 27.02 ± 0.67 31.12 ± 0.62

SU
N

39
7

Cosine 25.32 ± 0.18 38.13 ± 0.37 49.83 ± 0.45 56.97 ± 0.21 62.84 ± 0.16
CoOp 60.30 ± 0.64 59.52 ± 0.60 63.33 ± 0.39 65.65 ± 0.10 69.14 ± 0.11
CLIP-Adapter* 61.16 62.08 64.74 66.88 69.20

Cosine + ProGrad 29.66 ± 0.08 45.81 ± 0.39 55.92 ± 0.35 63.61 ± 0.16 67.33 ± 0.25
CoOp + l2 prompt reg 57.64 ± 0.33 59.81 ± 0.33 64.88 ± 0.45 67.66 ± 0.16 69.56 ± 0.11
CoOp + GM 62.73 ± 0.35 62.85 ± 0.10 63.32 ± 0.21 63.77 ± 0.04 64.47 ± 0.27
CoOp + KD 62.89 ± 0.40 64.10 ± 0.29 65.83 ± 0.26 67.02 ± 0.05 68.32 ± 0.19
ProGrad Upper Bound 67.65 ± 0.33 66.89 ± 0.44 68.33 ± 0.36 68.46 ± 0.24 70.18 ± 0.33
ProGrad 60.54 ± 0.24 63.06 ± 0.11 66.39 ± 0.43 67.62 ± 0.28 69.84 ± 0.18

D
T

D

Cosine 27.05 ± 0.83 38.42 ± 0.48 48.44 ± 2.29 58.47 ± 0.51 61.88 ± 0.38
CoOp 43.77 ± 2.12 46.06 ± 1.05 53.82 ± 0.77 60.06 ± 1.18 63.26 ± 0.22
CLIP-Adapter* 45.65 50.54 56.43 61.59 66.03

Cosine + ProGrad 26.95 ± 1.38 38.87 ± 1.02 48.05 ± 3.02 56.24 ± 2.81 63.40 ± 0.58
CoOp + l2 prompt reg 43.74 ± 1.45 45.98 ± 2.76 53.25 ± 1.55 59.08 ± 0.58 62.31 ± 1.05
CoOp + GM 43.81 ± 2.15 47.64 ± 0.63 49.17 ± 1.52 53.17 ± 0.63 54.06 ± 0.45
CoOp + KD 43.01 ± 2.18 49.31 ± 1.10 53.03 ± 1.49 60.26 ± 0.34 63.14 ± 0.39
ProGrad Upper Bound 66.11 ± 0.77 67.04 ± 0.72 67.24 ± 0.34 68.46 ± 0.41 69.27 ± 0.64
ProGrad 46.14 ± 1.74 49.78 ± 1.37 54.43 ± 0.86 60.69 ± 0.10 63.97 ± 0.61

E
ur

oS
A

T

Cosine 37.55 ± 5.27 52.93 ± 5.66 49.81 ± 6.23 46.08 ± 11.13 33.30 ± 13.04
CoOp 49.40 ± 3.86 62.23 ± 4.94 69.49 ± 3.23 76.56 ± 1.73 84.05 ± 1.05
CLIP-Adapter* 54.53 63.73 68.33 75.81 82.81

Cosine + ProGrad 41.55 ± 6.19 51.35 ± 5.76 47.64 ± 9.68 30.03 ± 2.99 33.30 ± 1.67
CoOp + l2 prompt reg 54.28 ± 5.38 62.60 ± 2.77 70.43 ± 1.81 77.32 ± 2.20 83.30 ± 1.11
CoOp + GM 48.02 ± 4.04 57.12 ± 2.03 62.88 ± 2.28 68.74 ± 2.18 67.72 ± 1.00
CoOp + KD 49.51 ± 1.12 58.89 ± 1.06 66.79 ± 0.76 74.37 ± 0.91 77.87 ± 1.74
ProGrad Upper Bound 90.97 ± 0.36 89.81 ± 1.89 89.57 ± 0.70 90.19 ± 0.47 90.92 ± 0.35
ProGrad 56.32 ± 3.04 63.10 ± 3.77 72.53 ± 1.29 78.04 ± 2.45 83.74 ± 0.70

U
C

F1
01

Cosine 34.41 ± 0.40 48.21 ± 1.00 58.47 ± 0.81 68.46 ± 0.66 73.64 ± 0.32
CoOp 62.03 ± 1.13 63.98 ± 0.91 67.45 ± 0.74 72.11 ± 0.29 75.67 ± 0.49
CLIP-Adapter* 63.80 66.98 70.07 73.45 76.99

Cosine + ProGrad 36.61 ± 0.14 52.11 ± 1.43 60.66 ± 1.50 69.85 ± 0.94 74.27 ± 0.30
CoOp + l2 prompt reg 62.88 ± 0.74 64.43 ± 0.71 67.46 ± 0.40 72.28 ± 0.88 75.77 ± 0.29
CoOp + GM 64.27 ± 0.48 66.14 ± 0.25 66.37 ± 0.27 67.91 ± 0.29 68.96 ± 0.04
CoOp + KD 64.99 ± 0.35 67.29 ± 0.46 68.44 ± 0.13 71.77 ± 0.41 74.15 ± 0.55
ProGrad Upper Bound 76.99 ± 0.42 77.24 ± 0.47 76.95 ± 0.66 78.16 ± 0.17 78.44 ± 0.26
ProGrad 64.55 ± 0.50 66.35 ± 0.18 69.86 ± 0.30 73.33 ± 0.65 77.28 ± 0.96



Table 5: Accuracy (%) for the base-to-new generalization evaluation. The context length M is 4 for prompt-based methods
which are learned from the base classes with 4 shots. H: Harmonic mean.

(a) Average over 11 datasets.

Base New H

CLIP 61.72 65.91 63.64
CoOp 71.96 61.26 65.58
CoCoOp 72.23 60.77 65.35
ProGrad 73.29 65.96 69.06

(b) ImageNet.

Base New H

64.46 59.99 62.14
65.49 57.70 61.35
66.21 58.01 61.84
66.96 60.04 63.23

(c) Caltech101.

Base New H

90.90 90.72 90.81
94.38 87.48 90.80
94.43 87.81 91.00
94.47 90.84 92.46

(d) OxfordPets.

Base New H

85.86 93.85 89.68
90.31 94.03 92.13
89.07 91.00 90.02
91.78 94.86 93.29

(e) StanfordCars.

Base New H

CLIP 55.55 66.35 60.47
CoOp 61.77 62.51 62.14
CoCoOp 61.68 59.98 60.82
ProGrad 63.01 64.32 63.66

(f) Flowers102.

Base New H

64.10 70.92 67.34
89.33 62.77 73.73
88.07 66.26 75.62
88.19 69.38 77.66

(g) Food101.

Base New H

81.48 82.15 81.81
80.40 81.09 80.74
79.77 77.68 78.71
83.10 83.57 83.33

(h) FGVCAircraft.

Base New H

17.89 25.13 20.90
22.53 20.40 21.41
22.73 19.40 20.93
22.77 24.24 23.48

(i) SUN397.

Base New H

CLIP 66.45 70.17 68.26
CoOp 71.48 65.57 68.40
CoCoOp 71.88 67.10 69.41
ProGrad 73.71 69.78 71.69

(j) DTD.

Base New H

49.31 54.35 51.71
67.71 43.92 53.28
63.54 40.78 49.68
66.90 53.06 59.18

(k) EuroSAT.

Base New H

39.26 43.62 41.33
73.53 40.19 51.97
83.63 40.95 54.98
79.67 49.99 61.43

(l) UCF101.

Base New H

63.70 67.71 65.64
74.59 58.23 65.40
73.51 59.55 65.80
75.66 65.52 70.23

Table 6: Domain generalization results with standard deviation.

(a) ResNet50

Source Target

ImageNet ImageNet-V2 ImageNet-Sketch ImageNet-A ImageNet-R

CoOp 61.34 ± 0.11 53.81 ± 0.10 32.83 ± 0.30 22.08 ± 0.59 54.62 ± 0.74
CoCoOp 61.04 ± 0.18 53.71 ± 0.26 32.30 ± 0.34 22.07 ± 0.34 53.60 ± 0.27
ProGrad 62.17 ± 0.06 54.70 ± 0.18 34.40 ± 0.18 23.05 ± 0.13 56.77 ± 0.33

(b) ResNet101

Source Target

ImageNet ImageNet-V2 ImageNet-Sketch ImageNet-A ImageNet-R

CoOp 63.99 ± 0.13 56.99 ± 0.21 39.40 ± 0.29 29.50 ± 0.56 64.04 ± 0.27
CoCoOp 63.59 ± 0.22 56.98 ± 0.25 39.16 ± 0.36 29.09 ± 0.18 64.14 ± 0.01
ProGrad 64.98 ± 0.15 57.86 ± 0.04 40.53 ± 0.17 30.13 ± 0.09 65.61 ± 0.08

(c) ViT-B/32

Source Target

ImageNet ImageNet-V2 ImageNet-Sketch ImageNet-A ImageNet-R

CoOp 64.74 ± 0.14 56.59 ± 0.27 40.03 ± 0.64 31.10 ± 0.06 64.54 ± 0.52
CoCoOp 64.63 ± 0.15 56.59 ± 0.04 40.74 ± 0.24 30.27 ± 0.05 64.12 ± 0.10
ProGrad 65.36 ± 0.23 57.42 ± 0.33 41.73 ± 0.25 31.89 ± 0.26 66.53 ± 0.08

(d) ViT-B/16

Source Target

ImageNet ImageNet-V2 ImageNet-Sketch ImageNet-A ImageNet-R

CoOp 69.86 ± 0.22 62.83 ± 0.37 46.90 ± 0.59 48.98 ± 0.33 74.55 ± 0.46
CoCoOp 70.13 ± 0.23 63.05 ± 0.06 46.48 ± 0.17 49.36 ± 0.26 73.80 ± 0.08
ProGrad 70.45 ± 0.16 63.35 ± 0.08 48.17 ± 0.10 49.45 ± 0.08 75.21 ± 0.32


