
This comes as supplementary material to the paper Re-
thinking Data Distillation: Do Not Overlook Calibration.
The appendix is structured as follows:

A. Distillation Backbones.

B. Additional Experiments.

A. Distillation Backbones
A.1. Datasets and Networks

Following [11, 10, 1, 2], we use a ConvNet with 3 blocks
for CIFAR10 and CIFAR100 [5], a ConvNet with 4 blocks
for Tiny-ImageNet [6], and a ConvNet with 5 blocks for
Nette (a subset of ImageNet) [4]. Each block in the Con-
vNets contains a 3 × 3 convolutional layer with 128 chan-
nels, followed by instance normalization [9], ReLU [7] and
a 2 × 2 average pooling layer with stride 2. We apply Ko-
rnia ZCA [8] on CIFAR10 and CIFAR100 for distillation
backbones [11, 10, 1]. We pick the ConvNet in each distil-
lation backbone because it gives the best distillation perfor-
mance while keeping the distillation process under an ac-
ceptable time and computational budget.

B. Additional Experiments
B.1. Details in Masked Temperature Scaling

We sample from all the distilled data we have as the vali-
dation set to update the temperature parameter T in our pro-
posed Masked Temperature Scaling. Instead of sampling
from all the shuffled data at once, we perform a per-class
sampling such that there is no missing class or over-sampled
class, which is especially important for distillation settings
that aim for aggressive compression rates such as image-
per-class ≤ 10. The traditional temperature scaling [3] sep-
arates all the data available into a training set and a val-
idation set and uses the validation set only for updating
T . This separated use of the distilled data is not applica-
ble when image-per-class = 1. Moreover, a data split of
10% can hurt training accuracy by as much as 1.68% on
the Nette subset of ImageNet, while our proposed during-
training calibration method (MDT) only hurts accuracy by
0.24%, as reported in Table 1. In addition, our proposed
after-training method Masked Temperature Scaling keeps
original training accuracy and achieves better calibration re-
sults than temperature scaling as reported in our main text.

B.2. More Results on SVD of Distilled Data and Full
Data

As we discussed in our main text, distilled data contain
more concentrated information that easily gets grouped by
algorithms such as SVD. We here illustrate the cumulative
explained ratio of top singular values of data distilled by dif-
ferent backbones. We expect that concentrated information

Table 1. Accuracy (%) drops by as much as 1.68% when train-
ing with 90% of distilled Nette (a subset of ImageNet). The
rest 10% is used in temperature scaling (TS). Our proposed after-
training MTS ( shadow ) keeps the original accuracy. Our pro-
posed during-training MDT ( shadow ) keeps a higher accuracy
than that of dropping 10% of training data for TS. We use MTT [1]
as the distillation backbone.

Dataset Full, MTS (Ours) TS (10%) MDT (Ours)
CIFAR10 70.48 ± 0.2 69.78 ± 0.5 69.98 ± 0.4
CIFAR100 47.47 ± 0.2 47.10 ± 0.2 46.21 ± 0.4
Tiny ImageNet 27.76 ± 0.2 27.35 ± 0.2 27.62 ± 0.4
ImageNette 63.04 ± 1.3 61.36 ± 1.6 62.80 ± 1.2

leads to a curve skewed to the top left and evenly distributed
information leads to a smooth curve close to the diagonal.
This will show how much each component corresponding to
the singular values in Σ contributes to the data reconstruc-
tion. As shown in Figure 1, the cumulative explained ratio
given by ours grows at the most steady rate, showing that
our method produces more evenly distributed information
in distilled data compared to the overly condensed informa-
tion in other distillation backbones. As we concluded in our
main text, this serves as a regularization to the distillation
process such that it cannot discard too much information
that is unrelated to the classification task but semantically
meaningful for other tasks, leading to more calibratable net-
works trained on the resulting distilled data.

B.3. More Results on DDNNs’ Limited Encoding
Capacity

We provide more visualizations of projections of inter-
mediate feature vectors obtained from DDNNs trained with
different during-training calibration methods. The methods
we use are mixup, focal loss, and label smoothing, in addi-
tion to the original training with cross-entropy loss. We can
see in Figure 4 that our proposed during-training calibration
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Figure 1. Cumulative explained ratio, i.e., percentage of top sin-
gular values to

∑
diag (Σ) in SVD decomposition of distilled CI-

FAR10 from different distillation backbones. Ours (red) grows at
the most steady rate, indicating its evenly distributed information,
compared to others with condensed information.



Figure 2. Ours (MTS) better calibrates DDNNs across different
IPC in MTT. Left: CIFAR10. Right: CIFAR100.
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Figure 3. The more calibratable FDNN outputs more evenly dis-
tributed logits, while the less calibratable DDNN outputs a more
concentrated logit distribution.
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Table 2. ECE (%) of different calibration methods on FDNNs.
With a low masking ratio r, our results ( shadow ) are comparable
to temperature scaling and most of the time beats other methods.
As our method is specifically designed for DDNNs, in the case
of FDNNs where traditional methods are suitable, we can simply
convert our method to temperature scaling by setting r to 0.

Dataset Raw TS MX LS FL MTS

CIFAR10 4.50 0.99 14.80 11.85 1.78 2.67

CIFAR100 13.05 1.41 10.69 7.17 3.49 1.84

Tiny ImageNet 22.26 4.95 6.34 3.29 12.55 4.93

ImageNette 10.90 2.81 11.22 22.24 5.21 2.87

MDT alleviates the issue of concentrate features for all the
traditional methods used, giving better encoding potentials
of DDNNs for transfer learning tasks, which leads to more
calibratable DDNNs.

B.4. More Results on CIFAR100: ECE on different
IPCs, max logits

We show in Figure2 that our MTS outperforms others
in ECE on different IPCs. In the main paper, we mainly
present IPC = 10 on Tiny-ImageNet & Subsets with MTT,
10 on CIFAR100 with DC/DSA (released), and 50 on oth-
ers. These DD settings have higher accuracy and would
better represent real-world settings.

We also provide visualization of maximum logits of
DDNN on original MTT in Figure 3, in addition to the re-
sults on CIFAR10 in our main paper.
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Figure 4. T-SNE projections of feature vectors from each layer of a
4-block ConvNet trained with mixup, label smoothing, focal loss,
and the original cross-entropy on distilled CIFAR10. In each train-
ing method, applying our proposed MDT (Ours) helps the network
encode more source information in intermediate layers, as visual-
ized by the rich features not separated until the last layer. The
original DDNN poorly encodes source information, as shown by
the feature projections already separated in layer conv2.

B.5. Performance Analysis of FDNNs

We further test MTS on the more calibratable FDNNs.
We calibrate networks trained on the full CIFAR10, CI-
FAR100, TinyImageNet, and Nette subset of ImageNet. We
report the mean of 2 runs due to limited computational re-
sources. As reported in Table 2, our method performs com-
parably with existing well-developed methods. In realistic
settings with a large amount of training data, we can set the
masking ratio r to 0, which converts the MTS back to nor-
mal temperature scaling.
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