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In this supplementary material, we provide more detailed
information to complement the main manuscript. Specif-
ically, we first introduce the implementation details, in-
cluding network architecture details and experimental set-
tings. Then, we conduct more ablation studies to analyze
our method. Next, we provide some failure cases and a dis-
cussion on the limitations of our work. Finally, we present
additional quantitative and qualitative results.

A. Detailed Settings
Network implementation details. We apply perspec-
tive projection to get the depth maps with the resolution
of 224 × 224 from three orthogonal views. We directly
feed the projected depth maps to the network without ap-
plying any color mapping enhancement. In SVFNet, we
use PointNet++ [5] to extract features from point clouds.
The detailed architecture is: SA(C = [3, 64, 128], N =
512,K = 16) → SA(C = [128, 256], N = 128,K =
16) → SA(C = [512, 256]). The final feature dimension
of ResNet18 [2] is set to 256. The dimension of the embed
query, key, and value in View Augment is set to 256. Af-
ter concatenation, we get the shape descriptor Fg with 512
channels. We use a self-attention layer of 512 hidden fea-
ture dimensions followed by an MLP to regress the coarse
points PC . The merged point cloud P0 has 512 and 1024
points for PCN and ShapeNet-55, respectively.

During refinement, we set the upsampling rates {r1,
r2} of the two SDGs as {4,8} and {2,4} for PCN and
ShapeNet-55, respectively. We adopt EdgeConv [7] to ex-
tract local features from Pin. The detailed architecture is:
EdgeConv(C = [3, 64],K = 16) → FPS(2048, 512) →
EdgeConv(C = [64, 256],K = 8). We use a shared-
weights architecture above in the two SDGs. After ob-
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Figure 1. The calculation process of Self-Attention.

taining FQ and FH , we use a decoder composed of two
self-attention layers (one in the ShapeNet-55 experiments)
to further analyze the coarse shapes. The hidden feature
dimensions of self-attention layers are set as [768, 128r1]
and [512, 128r2] in the two SDGs, thus producing Fl ⊆
RN×256r. Fl is then passed to an MLP and reshaped to
rN × 128. Finally, the coordinates offset is predicted by an
MLP with feature dimensions of [128, 64, 3].
Usage of attention. In our method, the self-attention layer
is used to generate Pc in SVFNet and decode FQ and FH in
SDG. We also use a cross-attention layer to find the geomet-
ric similarity. In our experiments, we implement the self-
attention module and the cross-attention module following
the same transformer architecture [6]. The point-wise fea-
tures are regarded as sequence data. The calculation pro-
cedure is illustrated in Figure 1. Given the input feature
Fin = {fi}

Nl−1

i=1 , the output feature matrix Z = {zi}
Nl−1

i=1 is
calculated as :

zi = hi + Linear(hi)

hi = bi + fi

bi =

Nl−1∑
j=1

ai,j(fjWV )

ai,j = Softmax((fiWQ)(fjWK)T )

, (1)

Experiment and training settings. The network is imple-
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Figure 2. Example of failure cases.

Table 1. Results and inference time of more ablation variants on
PCN. (ℓ2 CD ×103 and F1-Score@1%)

Variants CD↓ DCD↓ F1↑ Time

1 View 6.58 0.538 0.835 24.86ms
3 Views (Ours) 6.54 0.536 0.841 26.55ms

6 Views 6.55 0.536 0.840 27.11ms

Random Projection (inference) 6.58 0.537 0.838 26.25ms

Encoder in SpareNet [11] 6.66 0.551 0.825 37.26ms
ResNet-50 [2] as the 2D backbone 6.52 0.535 0.841 31.37ms
Vit-B/16 [1] as the 2D backbone 6.56 0.543 0.837 34.16ms

mented using PyTorch [4] and trained with the Adam opti-
mizer [3] on NVIDIA 3090 GPUs.

For training on the PCN dataset [14], the initial learning
rate is set to 0.0001 and decayed by 0.7 for every 40 epochs.
The batch size is set to 12. It takes 400 epochs for conver-
gence. Since the point coordinates in PCN are normalized
to [-0.5, 0.5], the depth maps are projected at a distance of
0.7 in order to observe the whole shape. To ensure that the
input point cloud contains exactly 2048 points, we take a
subset for point clouds with more than 2048 points and ran-
domly duplicate points for those with less than 2048 points.

For training on ShapeNet-55/34 [13], the number of
missing points is randomly selected from 2048 to 6192.
The initial learning rate is set to 0.0001 and decayed by
0.98 for every 2 epochs. The batch size is set to 16. It
takes 300 epochs for convergence. The point coordinates in
ShapeNet-55 are normalized to [-1.0, 1.0]. Therefore, D are
projected at a distance of 1.5. Following [10, 15], We use
a partial matching strategy, which includes setting a larger
resolution for P0 and adding a partial matching loss [8].

B. Ablation Studies

Ablation on the number of projections. We conduct an
ablation experiment on the number of depth maps D in
SVFNet. The depth maps D are projected from 1, 3, and

6 orthogonal views, respectively. The results on PCN are
shown in Table 1. To balance the trade-off between ef-
fectiveness and computational consumption, we conduct all
experiments using three views. This choice allows us to
capture sufficient information from the point clouds while
keeping the computational cost manageable.
Ablation on choice of coordinate systems. To testify the
robustness of our method, during inference, we introduced
random variations to the projection, including camera view
angle offsets ranging from 0 to 10 degrees and observation
distance displacements ranging from 0 to 0.1. The result re-
ported in the 5th row of Table 1 shows that the performance
will not significantly drop with random projections.
Ablation of different encoders. We testify the design
of encoder to further demonstrate the effect of our self-
view fusion feature extractor. We first replace the SVFNet
with the encoder in SpareNet [11], which contains layers
of channel-attentive EdgeConv, to re-produce the shape de-
scriptor Fg . We report the new results in Table 1, which
demonstrates that our self-view fusion feature extractor
achieves better performance than existing encoder while
having a tolerable computation cost. In addition, we ablate
the choice of 2D backbone in the SVFNet. To be specific,
We replace it with ResNet-50 [2] and the vision transformer
(ViT-B/16) [1], respectively. We find that a larger CNN-
based 2D backbone can slightly improve the performance
while introducing more computation cost. Moreover, using
the ViT results in unsatisfactory performance. This could be
attributed to the fact that the entire model was trained from
scratch, and larger models may not perform optimally with
a limited amount of 3D training data.

C. Failure Cases and Limitations

Figure 2 displays the failure cases we observed. It’s
worth noting that in cases where input shapes lack irreg-
ular structures that are uncommon in the training dataset
(such as the water wheel of a watercraft), the network may



Table 2. DCD results on the PCN dataset. Lower is better.
Methods Plane Cabinet Car Chair Lamp Couch Table Boat Avg

GRNet [12] 0.688 0.582 0.610 0.607 0.644 0.622 0.578 0.642 0.622
PoinTr [13] 0.574 0.611 0.630 0.603 0.628 0.669 0.556 0.614 0.611

SnowflakeNet [10] 0.560 0.597 0.603 0.582 0.598 0.633 0.521 0.583 0.585
PMP-Net++ [9] 0.600 0.605 0.614 0.613 0.610 0.647 0.577 0.622 0.611
Seedformer [15] 0.557 0.592 0.598 0.579 0.585 0.626 0.520 0.605 0.583

Ours 0.506 0.549 0.559 0.524 0.535 0.579 0.472 0.562 0.536

Table 3. F1-Score@1% on the PCN dataset. Higher is better.

Methods Plane Cabinet Car Chair Lamp Couch Table Boat Avg

GRNet [12] 0.843 0.618 0.682 0.673 0.761 0.605 0.751 0.750 0.708
PoinTr [13] 0.915 0.665 0.718 0.710 0.798 0.632 0.796 0.797 0.754

SnowflakeNet [10] 0.941 0.695 0.745 0.776 0.858 0.691 0.867 0.834 0.801
PMP-Net++ [9] 0.941 0.660 0.721 0.754 0.860 0.657 0.822 0.830 0.781
Seedformer [15] 0.950 0.700 0.753 0.803 0.885 0.712 0.884 0.850 0.818

Ours 0.962 0.738 0.792 0.833 0.897 0.746 0.901 0.863 0.841

not be capable of producing satisfactory results. Neverthe-
less, our method still outperforms state-of-the-art (SOTA)
methods [13, 10, 15] when dealing with simple geometric
structures, like the body of the watercraft. Our SDG in-
corporates a Structure Analysis unit that leverages learned
priors to complete shapes. However, its effectiveness may
be constrained by the limited amount of available training
data. Given that transformers have demonstrated effective-
ness in scenarios with abundant training data, pretraining
with large-scale 2/3D datasets could be a promising ap-
proach to address this limitation.

D. Additional Results

More detailed quantitative results for individual cases are
available in Tables 2 and 3. Our method achieves the best
DCD and F1-score on each category of the PCN dataset. In
addition, we show more visual results in Figures 3, 4, and 5.
In Figure 3, we present two partial point clouds on each cat-
egory of the PCN dataset. In Figure 4, we present six par-
tial point clouds of ShapeNet-55 and compare the results
with two representative approaches [13, 15]. Our method
generates more compact overall shapes and richer details.
Also, we visualize more results in Figure 5, where the par-
tial shapes are generated from two different viewpoints.
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Figure 3. Visual results on the PCN dataset.



Figure 4. Visual Comparison with two representative approaches [13, 15] on ShapeNet-55.



Figure 5. More visual results on ShapeNet-55. We show results when the partial input are generated from two viewpoints.


