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1. Experimental Details

This section provides more experimental information,
including dataset, implementation details, and computation
resources used.

Dataset and Federated Simulation. We run experiments
using Taskonomy dataset [6], which is a large and chal-
lenging computer vision (CV) dataset of indoor scenes of
buildings. To facilitate reproducibility and mitigate compu-
tational requirements, we use the tiny split of Taskonomy
dataset,1 whose size is around 445GB. We select nine CV
applications to form three sets of FL tasks: sdnkt, erckt,
sdnkterca. These nine tasks are also used in [5]. Figure
1 provides sample images of these nine FL tasks. In partic-
ular, we employ indoor images of 32 buildings 2 as the total
number of clients N = 32; each client contains images of
a building to simulate the statistical heterogeneity. Figure
2 shows sample images of four clients; their indoor scenes
vary in design, layout, objects, and illumination.

Implementation Details. We reference the implementa-
tion of multi-task learning from [5]’s official repository 3 for
all-in-one training and training of each split after task split-
ting. Each task is trained with an independent loss function.
In particular, semnatic segmentation s uses Cross Entropy
loss; surface normals and depth estimation use rotation loss
based on L1 loss; keypoint detection, edge occlusion, edge
texture, auto encoder, and principle curvature use L1 loss.
We refer implementation of loss functions from [5] 4.

1Taskonomy dataset is released under MIT license and can be
downloaded from their official repository https://github.com/
StanfordVL/taskonomy.

2The name of the buildings are allensville, beechwood, benevolence,
coffeen, collierville, corozal, cosmos, darden, forkland, hanson, hiteman,
ihlen, klickitat, lakeville, leonardo, lindenwood, markleeville, marstons,
mcdade, merom, mifflinburg, muleshoe, newfields, noxapater, onaga,
pinesdale, pomaria, ranchester, shelbyville, stockman, tolstoy, and uvalda.

3https://github.com/tstandley/taskgrouping
4https://github.com/tstandley/taskgrouping/

blob/master/taskonomy_losses.py

Implementation of Compared Methods. We tune the
hyperparameter µ = 0.004 for the proximal term in Fed-
Prox [4]. GradNorm [2] implementation is adopted from
[5, 3] with default α = 1.5 and TAG [3] implementation is
adopted from their official repository 5. Next, we provide
the details of how we compute the results of HOA [5] and
TAG [3].

HOA [5] needs to compute test losses for individual tasks
and pair-wise task combinations for R = 100 rounds. After
that, we use these results to estimate test losses of higher-
order combinations following [5]. We then compute the ac-
tual test losses for the optimal task splits that have the lowest
test losses by training them from scratch. For example, for
task set sdnkt, we compute s, d, n, k, t and ten pair-wise
task combinations. Then, we use these results to estimate
test losses of higher-order combinations.

TAG [3] first computes all-in-one training for R = 100
rounds to obtain the pair-wise affinities. Then, it uses a
network selection algorithm to group these FL tasks. Af-
ter that, we train each split of FL tasks from scratch for
R = 100 rounds to obtain test losses. The best result is
reported for overlapping tasks. For example, {sd, dn,
kt} is the best result of three splits of TAG on task set
sdnkt. Then, each split is trained from scratch to obtain
test losses.

Computation Resources. Experiments in this work take
approximately 27,765 GPU hours of NVIDIA Tesla V100
GPU for training. We conduct three independent runs of
experiments for the majority of empirical studies. In each
run, task set sdnkt takes around 2,330 GPU hours, erckt
takes around 3,280 GPU hours, and sdnkterca takes
around 3,645 GPU hours. These include experiments of
compared methods and ablation studies, whereas these do
not include the GPU hours for validation and testing. It
takes around the same GPU hours as training when we val-
idate the model after each training round.

5https://github.com/google-research/
google-research/tree/master/tag



(a) Input Image (b) s: Segmentation

(c) d: Depth Estimation (d) n: Surface Normals

(e) k: Keypoint (f) t: Edge Texture

(g) e: Edge Occlusion (h) r: Reshasing

(i) c: Principle Curvature (j) a: Auto-encoder

Figure 1: Sample images of nine FL tasks corresponding to
the input image.

Figure 2: Sample images of four clients, where each client
contains indoor scenes of a building. These indoor images
differ in design, layout, objects, and illumination.

2. Additional Experimental Evaluation

This section provides more experimental results, includ-
ing comprehensive results of performance evaluation and
additional ablation studies.

2.1. Performance Evaluation

Table 3, 4, and 5 provide comprehensive compari-
son of different methods on test loss, training time, and
energy consumption on task sets sdnkt, erckt, and
sdnkterca, respectively. They complement the results
in the main manuscript. Additionally, these tables also pro-
vide carbon footprints (CO2eq) of different methods. The
carbon footprints are estimated using Carbontracker [1].6

Our method reduces around 40% on carbon footprints on
these three task sets compared with one-by-one training; it
reduces 1526g CO2eq or equivalent to traveling 12.68km by
car on sdnkterca. The reduction is even more significant
when compared with TAG and HOA. Although we run ex-
periments using Tesla V100 GPU, the relative results of en-
ergy and carbon footprint among different methods should
be representative of the scenarios of edge devices.

2.2. Additional Analysis and Ablation Studies

This section presents additional analysis of MAS and
provides additional ablation studies.

6Carbon intensity of a training varies over geographical regions accord-
ing to [1]. We use the national level (the United Kingdom as the default
setting of the tool) of carbon intensity for a fair comparison across differ-
ent methods. These carbon footprints serve as a proxy for evaluation of the
actual carbon emissions.
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(c) Task set sdnkterca

Figure 3: Changes of validation loss over the course of
training on task sets: (a) sdnkt, (b) erckt, and (c)
sdnkterca. Validation loss converges as training pro-
ceeds.

Method Task Set Two Splits Three Splits Four Splits Five Splits

TAG sdnkt sdn,kt sd,dn,kt sd,sdn,dn,kt
MAS sdnkt sdn,kt sdn,k,t sd,n,k,t s,d,n,k,t

TAG erckt er,rckt er,kt,rc er,kt,rc,rt
MAS erckt er,ckt er,c,kt er,c,k,t e,r,c,k,t

TAG sdnkterca sdnkterca,dr sdnerc,dr,kta sc,dr,ne,kta
MAS sdnkterca snkteac,dr snec,dr,kta sn,dr,ka,etc sn,dr,ka,e,tc

Table 1: Task splitting results of TAG [3] and MAS on task
sets sdnkt, erckt, and sdnkterca. Each split is sepa-
rated by a comma.

Task Set Splits Optimal Splits Worst Splits

sdnkt
2 dk,snt sn,dkt nt,sdk st,dnk st,dnk st,dnk
3 t,sn,dk k,t,sdn d,sn,kt d,st,nk d,st,nk s,dt,nk

erckt
2 r,eckt t,erck et,rck rk,ect ek,rct e,rckt
3 r,ec,kt r,t,eck r,ec,kt c,e,rk e,k,rct e,rt,ck

Table 2: Results of the optimal and worst splits in three runs
of experiments. They are not identical due to variances in
three runs of experiments.

Changes of Vadiation Loss. Figure 3 presents validation
losses over the course of all-in-one training of three FL task
sets sdnkt, erckt, and sdnkterca. It shows that vali-
dation losses converge as training proceeds.
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Figure 4: Changes of affinity scores of one FL task to the
other over the course of training on task set sdnkterca.
The trends of affinities emerge at the early stage of training.

Splitting Results of Various Methods. We provide re-
sults of task splitting of TAG [3] and MAS in Table 1. Ta-
ble 2 presents the splitting results of the optimal and worst
splits. They are not identical due to variances in multiple
runs of experiments. We report the mean and standard devi-
ation of test losses of the optimal splits and the worst splits
in the manuscript. The large variances of the optimal and
worst splits suggest the instability of splitting by measuring
the performances of training from scratch in the FL settings
and demonstrate the advantage of our methods in obtaining
stable splits.

Dataset Size and Performance. The dataset size of task
set sdnkt is around 315GB in our experiments, compared
to 2.4TB of dataset used in experiments of TAG [3]. The
test loss of ours (0.512 in Table 2 in the main manuscript),
however, is better than the optimal one in TAG paper [3]
(0.5246). This back-of-the-envelope comparison indicates
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Figure 5: Analysis of the impact of local epoch E and im-
pact of the number of selected clients K. Larger E (with
fixed R = 100) and K requires higher computation. They
could reduce losses, but the marginal benefit decreases as
computation increases.

the potential to extend our approaches to multi-task learn-
ing. Besides, it could also suggest that our data size is suf-
ficient for evaluation.

Impact of Affinity Computation Frequency ρ. The fre-
quency of computing affinities in Equation 3 determines the
amount of extra needed computation. We use ρ = 5 and
compute affinities for the first ten rounds for all experiments
because the trend of affinities emerges in the early stage of
training in Figure 4. It would increase the computation of
all-in-one training by around 2%, which is already factored
into the energy consumption computation in previous ex-
periments. The results in Table 3, 4, and 5 show that MAS
is effective with this setting and the amount of computation
is acceptable.

Impact of Local Epoch. Figure 5a show the impact
of local epoch E on task sets sdnkt, erckt, and
sdnkterca. They complement results of task set sdnkt
in the main manuscript. Larger E could lead to better per-
formance with fixed R = 100. It is especially effective
when increasing E = 1 to E = 2, but further increasing E
could degrade the performance. It indicates that simply in-
creasing computation has limited capability to improve per-
formance.

Impact of The Number of Selected Clients. Figure 5b
compares the performance of different numbers of selected
clients K = {2, 4, 6, 8, 16} on three task sets sdnkt,
erckt, and sdnkterca. The results on three FL task sets
are similar; increasing K reduces losses, but the marginal
benefit decreases as K increases.
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Method Total Loss Time (h) Energy (kWh) CO2eq (g) s d n k t

One-by-one 0.603 ± 0.030 16.9 ± 0.5 8.4 ± 0.1 2465 ± 39 0.086 ± 0.005 0.261 ± 0.023 0.107 ± 0.001 0.107 ± 0.003 0.043 ± 0.002

FedAvg* 0.677 ± 0.018 7.3 ± 0.3 3.7 ± 0.1 1086 ± 28 0.087 ± 0.002 0.246 ± 0.010 0.136 ± 0.001 0.126 ± 0.019 0.083 ± 0.008
FedProx* 0.711 ± 0.070 7.7± 0.5 4.4 ± 0.7 1304 ± 205 0.089 ± 0.008 0.253 ± 0.015 0.139 ± 0.006 0.117 ± 0.006 0.112 ± 0.039

GradNorm* 0.691 ± 0.013 7.8 ± 0.6 4.1 ± 0.4 1200 ± 122 0.092 ± 0.001 0.251 ± 0.012 0.138 ± 0.003 0.118 ± 0.007 0.093 ± 0.019

HOA-2 0.651 ± 0.029 63.0 ± 0.9 31.0 ± 0.5 9125 ± 140 0.091 ± 0.011 0.245 ± 0.002 0.135 ± 0.000 0.107 ± 0.003 0.074 ± 0.023
HOA-3 0.598 ± 0.029 63.0 ± 0.9 31.0 ± 0.5 9125 ± 140 0.083 ± 0.022 0.239 ± 0.007 0.127 ± 0.008 0.107 ± 0.003 0.043 ± 0.002
HOA-4 0.597 ± 0.015 63.0 ± 0.9 31.0 ± 0.5 9125 ± 140 0.094 ± 0.009 0.238 ± 0.002 0.115 ± 0.014 0.107 ± 0.003 0.043 ± 0.002

TAG-2 0.624 ± 0.015 17.4 ± 0.5 9.8 ± 0.3 2876 ± 88 0.083 ± 0.004 0.242 ± 0.005 0.134 ± 0.001 0.110 ± 0.007 0.055 ± 0.006
TAG-3 0.613 ± 0.032 20.5 ± 0.7 11.3 ± 0.2 3313 ± 56 0.094 ± 0.005 0.233 ± 0.002 0.122 ± 0.013 0.110 ± 0.008 0.055 ± 0.008
TAG-4 0.603 ± 0.027 25.2 ± 0.8 13.7 ± 0.3 4016 ± 80 0.083 ± 0.005 0.233 ± 0.002 0.122 ± 0.013 0.110 ± 0.008 0.055 ± 0.008

MAS-2 0.578 ± 0.015 8.8 ± 0.5 4.9 ± 0.3 1431 ± 94 0.069 ± 0.006 0.231 ± 0.006 0.124 ± 0.002 0.102 ± 0.003 0.052 ± 0.003
MAS-3 0.555 ± 0.015 9.7 ± 0.5 5.4 ± 0.3 1589 ± 94 0.072 ± 0.006 0.222 ± 0.006 0.124 ± 0.002 0.095 ± 0.003 0.042 ± 0.003
MAS-4 0.548 ± 0.001 12.9 ± 0.6 6.7 ± 0.3 1969 ± 75 0.070 ± 0.002 0.230 ± 0.008 0.111 ± 0.000 0.095 ± 0.007 0.042 ± 0.001

* All-in-one methods

Table 3: Comparison of test loss, training time, energy consumption, and carbon footprint on task set sdnkt.

Method Total Loss Time (h) Energy (kWh) CO2eq (g) e r c k t

One-by-one 1.055 ± 0.034 23.0 ± 3.7 11.1 ± 2.2 3277 ± 660 0.148 ± 0.000 0.371 ± 0.029 0.386 ± 0.006 0.107 ± 0.003 0.043 ± 0.002

FedAvg* 1.130 ± 0.022 13.6 ± 0.8 5.0 ± 0.3 1478 ± 84 0.146 ± 0.001 0.379 ± 0.019 0.393 ± 0.002 0.110 ± 0.003 0.079 ± 0.013
FedProx* 1.101 ± 0.014 10.2 ± 0.3 6.2 ± 0.2 1818 ± 61 0.146 ± 0.001 0.369 ± 0.008 0.393 ± 0.001 0.113 ± 0.004 0.081 ± 0.012

GradNorm* 1.154 ± 0.055 10.4 ± 0.6 5.0 ± 0.2 1462 ± 70 0.147 ± 0.002 0.381 ± 0.015 0.394 ± 0.001 0.149 ± 0.062 0.082 ± 0.005

HOA-2 1.082 ± 0.032 82.6 ± 0.5 38.3 ± 0.3 11265 ± 86 0.149 ± 0.003 0.365 ± 0.025 0.394 ± 0.002 0.109 ± 0.002 0.064 ± 0.022
HOA-3 1.062 ± 0.024 82.6 ± 1.1 38.3 ± 0.2 11265 ± 53 0.149 ± 0.001 0.365 ± 0.014 0.394 ± 0.001 0.109 ± 0.006 0.046 ± 0.007
HOA-4 1.053 ± 0.034 82.6 ± 0.5 38.3 ± 0.3 11265 ± 86 0.148 ± 0.002 0.369 ± 0.028 0.386 ± 0.006 0.105 ± 0.001 0.045 ± 0.003

TAG-2 1.095 ± 0.033 26.5 ± 2.0 14.0 ± 0.9 4119 ± 279 0.147 ± 0.002 0.379 ± 0.013 0.393 ± 0.000 0.108 ± 0.005 0.068 ± 0.015
TAG-3 1.091 ± 0.034 28.2 ± 1.2 14.4 ± 0.6 4242 ± 170 0.147 ± 0.002 0.388 ± 0.014 0.396 ± 0.002 0.109 ± 0.009 0.050 ± 0.011
TAG-4 1.087 ± 0.028 34.6 ± 1.1 17.4 ± 0.5 5114 ± 159 0.147 ± 0.002 0.384 ± 0.011 0.396 ± 0.002 0.109 ± 0.009 0.050 ± 0.011

MAS-2 1.039 ± 0.024 13.0 ± 1.1 6.7 ± 0.2 1957 ± 53 0.143 ± 0.001 0.343 ± 0.014 0.393 ± 0.001 0.104 ± 0.006 0.056 ± 0.007
MAS-3 1.015 ± 0.018 14.2 ± 0.4 7.2 ± 0.2 2108 ± 50 0.143 ± 0.000 0.336 ± 0.005 0.383 ± 0.001 0.102 ± 0.008 0.052 ± 0.009
MAS-4 1.002 ± 0.014 14.8 ± 0.2 7.6 ± 0.0 2229 ± 14 0.143 ± 0.000 0.336 ± 0.005 0.383 ± 0.001 0.094 ± 0.009 0.046 ± 0.004

*All-in-one methods

Table 4: Comparison of test loss, training time, energy consumption, and carbon footprint on task set erckt.

Method Total Loss Time (h) Energy (kWh) CO2eq (g) s d n k t e r c a

One-by-one 1.46 ± 0.011 31.0 ± 0.8 11.9 ± 0.5 3512 ± 151 0.08 ± 0.009 0.24 ± 0.014 0.10 ± 0.001 0.10 ± 0.002 0.04 ± 0.003 0.15 ± 0.001 0.35 ± 0.011 0.38 ± 0.002 0.02 ± 0.000

FedAvg* 1.49 ± 0.025 12.2 ± 0.3 4.9 ± 0.2 1435 ± 60 0.09 ± 0.002 0.23 ± 0.009 0.13 ± 0.002 0.10 ± 0.002 0.07 ± 0.005 0.14 ± 0.001 0.33 ± 0.011 0.39 ± 0.001 0.02 ± 0.001
FedProx* 1.49 ± 0.010 15.2 ± 0.3 7.3 ± 0.3 2151 ± 99 0.08 ± 0.000 0.23 ± 0.005 0.12 ± 0.001 0.10 ± 0.001 0.07 ± 0.010 0.14 ± 0.000 0.33 ± 0.006 0.39 ± 0.000 0.02 ± 0.000

GradNorm* 1.50 ± 0.049 12.2 ± 2.0 5.3 ± 1.3 1561 ± 377 0.08 ± 0.004 0.24 ± 0.014 0.13 ± 0.003 0.10 ± 0.003 0.07 ± 0.011 0.14 ± 0.001 0.34 ± 0.018 0.39 ± 0.001 0.02 ± 0.001

TAG-2 1.49 ± 0.025 30.3 ± 0.4 14.7 ± 0.8 4317 ± 229 0.09 ± 0.002 0.23 ± 0.008 0.13 ± 0.002 0.10 ± 0.002 0.07 ± 0.005 0.14 ± 0.001 0.33 ± 0.011 0.39 ± 0.001 0.02 ± 0.001
TAG-3 1.44 ± 0.014 34.5 ± 3.1 16.5 ± 2.6 4854 ± 751 0.09 ± 0.006 0.23 ± 0.009 0.12 ± 0.001 0.10 ± 0.002 0.03 ± 0.004 0.14 ± 0.000 0.33 ± 0.009 0.39 ± 0.001 0.02 ± 0.000
TAG-4 1.44 ± 0.007 34.9 ± 2.7 15.8 ± 2.4 4639 ± 717 0.07 ± 0.003 0.24 ± 0.002 0.11 ± 0.001 0.10 ± 0.002 0.03 ± 0.004 0.14 ± 0.000 0.35 ± 0.003 0.39 ± 0.001 0.02 ± 0.000

MAS-2 1.45 ± 0.021 14.6 ± 0.5 6.0 ± 0.1 1947 ± 175 0.08 ± 0.003 0.22 ± 0.008 0.12 ± 0.001 0.10 ± 0.001 0.06 ± 0.004 0.14 ± 0.000 0.32 ± 0.011 0.39 ± 0.001 0.02 ± 0.001
MAS-3 1.39 ± 0.030 15.7 ± 0.6 6.6 ± 0.4 1955 ± 104 0.07 ± 0.005 0.22 ± 0.008 0.12 ± 0.002 0.08 ± 0.002 0.05 ± 0.003 0.14 ± 0.001 0.32 ± 0.011 0.38 ± 0.001 0.02 ± 0.000
MAS-4 1.40 ± 0.027 17.9 ± 0.5 7.5 ± 0.3 2201 ± 94 0.06 ± 0.004 0.22 ± 0.008 0.12 ± 0.003 0.08 ± 0.002 0.05 ± 0.001 0.14 ± 0.001 0.32 ± 0.011 0.39 ± 0.001 0.02 ± 0.001
MAS-5 1.40 ± 0.028 20.0 ± 0.7 8.3 ± 0.4 2439 ± 105 0.06 ± 0.004 0.22 ± 0.008 0.12 ± 0.003 0.08 ± 0.002 0.05 ± 0.000 0.14 ± 0.002 0.32 ± 0.011 0.39 ± 0.001 0.02 ± 0.001

*All-in-one methods

Table 5: Comparison of test loss, training time, energy consumption, and carbon footprint on sdnkterca.


