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1. Introduction

This file contains supplementary material for SC3K:
Self-supervised and Coherent 3D Keypoints Estimation
from Rotated, Noisy, and Decimated Point Cloud Data.
Due to the limited space in the main paper, here we
present additional ablations related to the experimental
section of the paper, provide a complete table (as given
in [4]) comparing the DAS of our approach with other
methods, and show the qualitative results of our exper-
iments. Moreover, we also share a video representing
3D visualizations of the results reported in the main
paper (i.e., the keypoints estimated by SC3K and SOTA
approaches). The video (rotating keypoints) makes it
easy to understand the robustness of the SC3K.

2. Additional Ablations

This section presents seven additional ablations: 1)
comparison of the estimated keypoints with the ver-
tices of a convex hull (CH) of the object, 2) evaluation
of SC3K on partial PCDs, 3) performance of SC3K
for different number of keypoints, 4) sensitivity of the
inclusivity metric with respect to (w.r.t.) the thresh-
old τ2, 5) impact of the separation and shape loss on
the performance of SC3K, 6) impact of the residual
block on SC3K, and 7) evaluation of SC3K for different
augmentations.

2.1. Keypoints vs. vertices of a Convex Hull (CH)

Since our approach estimates keypoints on the ob-
ject’s surface, one can relate them with the vertices of
the CH of the object. Therefore in this section, we high-
light the significance of our keypoints over the vertices
of the CH. We observed that the vertices of the CH are
not as expressive as our semantic keypoints due to the
following reasons:

• CH vertices do not maintain semantic informa-

tion (ordering) that represents correspondences
between two or more views. To validate this, we
implemented a new baseline where we computed
vertices of the CH of the test samples, selected 10
meaningful vertices (since 10 keypoints are used
for comparison) by using K-means clustering, and
computed the DAS metric for them. It is found
that the DAS of SC3K (82.86) is +68.87 higher
than the one obtained from the CH vertices (13.99).

• CH vertices will not include points that lie within
the convex hull (see Fig. 1), which might be impor-
tant for some downstream tasks, e.g. characterising
the shape of objects.

(a) Keypoints of SC3K (b) Vertices of the CH

Figure 1: Comparison: (a) keypoints estimated by
SC3K w.r.t. the object, (b) vertices of the CH w.r.t.
the keypoints of the SC3K. Some of the keypoints are
not included in the vertices of the CH.

2.2. Evaluation od SC3K on partial PCDs

SC3K is flexible in the backbone used, so it is pos-
sible to insert a Point Completion Network (PCN) [5]
that accepts partial PCDs. The updated network first
estimates the missing parts of the object and then pre-
dicts the keypoints. We use the pretrianed weights of
the PCN. We consider common categories of the PCN



Data type Inclusivity Coverage DAS Average

Seen categories

Partial 46.65 89.12 54.46 63.41
Dense 77.61 94.66 79.45 83.90
Complete 90.69 95.09 80.27 88.68

Unseen categories

Partial 62.78 91.40 51.92 68.70
Dense 48.27 94.11 72.73 71.70
Complete 87.11 96.76 64.27 82.71

Table 1: Results for the PCN dataset. We test SC3K
separately on PCN seen and unseen categories. On
average, the results are improved when the input shapes
are completed (dense) using the PCN network.

and keypointNet dataset and select five seen (airplane,
car, chair, table, vessel) and three unseen (bed, gui-
tar, motorbike) categories. The results for the selected
categories are given in Tab. 1. As expected, the perfor-
mance is higher for estimated complete PCDs (called
as dense) and lower for partial PCDs. Consider that
the updated approach depends on the shape completion
module. Thus results are not very impressive where
the shapes are not properly estimated. Fig. 2. shows
keypoints predicted on partial and estimated complete
PCDs.

Figure 2: Visualizations of the keypoints estimated on
partial and completed PCD.

2.3. Performance of the proposed approach for dif-
ferent numbers of keypoints

We evaluate our approach by varying the number of
computed keypoints from the PCD. We found that for
most of the shapes (e.g., bottle, guitar), our approach
estimates keypoints over the surface of the object. How-
ever, for the detailed objects with gaps between the
parts (i.e., airplanes have relevant empty spaces be-
tween a wing and the tail), some of the keypoints are
estimated outside the object (in the gaps). This ef-
fect appears only when a high number of keypoints are

considered (higher than 35). As an example, different
numbers of keypoints estimated for the cup and airplane
category are shown in Fig. 3.

Figure 3: Estimation of different numbers of keypoints
for the same object. The keypoints are estimated on
the object’s surface if they are less than or equal to
35 in number. They are predicted outside the object
(in case of more than 35 keypoints), especially for a
detailed object having empty spaces among its parts.

2.4. Inclusivity metric and its sensitivity w.r.t. to the
parameter τ2

The inclusivity metric (defined by [1]) depends on
the total number of keypoints and the tolerance thresh-
old τ2. To validate this, we train our network separately
for different numbers of keypoints, and calculate the in-
clusivity for different τ2. It is found that the inclusivity
is higher for fewer keypoints, and it increases with the
increase in the τ2. Fig. 4 shows the average inclusivity
(of the test set) for different values of τ2.

2.5. Impact of the separation and shape loss on per-
turbation

We observed that the separation and shape loss con-
tribute to robustness, especially in the case of pertur-
bation. To validate this, we have trained SC3K (for
airplane category) without separation and shape loss
and tested it for noisy and down-sampled PCDs. The
results are illustrated in Tab. 2. The performance drops
significantly with an increase in the noise ratio or down-
sampling scale.

2.6. Impact of residual blocks

We evaluated SC3K by replacing the residual blocks
with Conv1D layers obtaining a performance decrease
of -3.54% -8.21% -6.70% on inclusivity, convergence and
DAS on keypointNet dataset. Such a remarkable drop
supports our design choice.
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Figure 4: Average inclusivity of the proposed approach
for different keypoints and thresholds (τ2). The inclu-
sivity increases with an increase in the τ2, and it is
higher for fewer keypoints.

Noise/down-sample scale 0/0x 0.02/4x 0.06/16x

All loss
Inc. 87.2/87.2 83.1/84.9 79.6/82.6
Cov. 96.3/96.3 95.2/96.1 92.6/95.6

Without two losses
Inc. 80.2/80.2 74.9/60.1 59.2/50.8
Cov. 90.9/90.9 87.8/86.0 84.5/82.2

Table 2: Results for PCD perturbations without using
separation and shape loss

2.7. Evaluation for different augmentation strate-
gies

As reported in Tab. 3, we evaluate the effect of differ-
ent augmentations during training, such as downsample
(DS), Noise (N) and Rotation (R). We used the same
test set (canonical, without noise and down-sampling)
for evaluation. Tab. 3 shows that the coverage and in-
clusivity decrease due to augmentations, whereas DAS
increases when we use noisy and downsampled train
samples. We observed that for noisy downsampled sam-
ples, although the keypoints are semantically consistent,
they are not estimated on the object’s surface. Consid-
ering the average value, we suggest that only rotations
should be used as augmentation for training.

Augmentation Inclusivity Coverage DAS Average

R 75.89 95.63 69.71 80.41
R + DS 73.61 89.56 71.72 78.30
R + N 70.78 91.11 65.98 75.95
R + DS + N 70.47 89.68 77.68 79.27

Table 3: Evaluation of SC3K for different augmenta-
tions.

3. Quantitative results

This section presents some additional quantitative
comparisons of SC3K with SOTA approaches.

3.1. Comparison with USEEK [3]

We compare our keypoints for random-oriented PCDs
with those of USEEK. We select the four categories (air-
plane, chair, guitar and knife) for which the USEEK’s
pretrained weights are available. The results are re-
ported in Tab. 4. We found that, on average, SC3K’s
inclusivity and coverage are +16.71% and +23.82%
higher than those of USEEK. However, USEEK es-
timates only 3 and 4 keypoints for knife and guitar,
respectively, so those are well separated and semanti-
cally ordered. Moreover, considering pose estimation
as a downstream task, we use the keypoints estimated
by both methods to compute a relative pose between
two randomly oriented PCDs. The mean/median of
the pose error of SC3K is +19.75◦/+5.69◦ better than
that of USEEK. Thanks to the mutual loss compo-
nents for enabling SC3K to estimate aligned keypoints
irrespective of orientation.

Approach Inclusivity ↑ Coverage ↑ DAS ↑ Pose error ↓
Mean Median

USEEK 80.49 73.42 77.78 30.12 6.45
SC3K 97.20 97.24 72.70 10.72 0.76

Difference +16.71 +23.82 -5.08 +19.40 +5.69

Table 4: Comparison of SC3K with USEEK [3]. The
keypoints estimated by SC3K are comparatively more
useful for computing relative pose between two trans-
formed versions of the same object.

3.2. Comparison with ISS [6] and MR [4]

In this section, we compare DAS of SC3K with the
other baseline approaches, i.e., ISS [6] and MR [4]. We
consider their DAS exactly the same as reported in [4].
Our results are the same as we have reported in the
main paper. However, we only show the DAS of the
same categories as given in [4]. It can be observed that,
on average, SC3K outperforms the other approaches.

4. Qualitative results

This section presents a qualitative comparison of the
SC3K with the SOTA approaches. Moreover, it also
shows the keypoints estimated by SC3K for intra-class,
noisy and down-sampled objects.

4.1. Comparison with ULCS [1] and SM [2]

We show in this section the keypoints estimated by
SC3K and the SOTA approaches in Fig. 5. For better



ULCS [1] SM [2] ISS [6] MR [4] SC3K

Airplane 61.40 77.70 13.10 81.00 82.86
Chair 64.30 76.80 10.70 83.10 87.04
Car – 79.40 8.00 74.00 75.19
Table – 70.00 16.20 78.50 76.03
Guitar – 63.10 8.70 61.30 65.67
Mug – 67.20 11.20 68.20 79.25
Cap – 53.00 13.10 57.10 59.72

Mean 62.85 69.60 11.57 71.89 74.54

Table 5: Comparison based on the semantic consistency
between the keypoints estimated for different objects
of the same category. The baseline results (DAS) are
the same as reported in [4]. The higher value is best.

understanding, the estimated keypoints (in different
colours) are shown on top of the original PCDs (in Gray).
The colour of the keypoints represents their semantic
ID information, i.e. a point with the same colour should
stay in the same area despite perturbations. Columns
1 and 2 illustrate the keypoints estimated by ULCS [1]
and SM [2], respectively. In contrast, two views of
the keypoints estimated by the proposed approach are
depicted in columns 3 and 4. The comparison validates
that our keypoints are estimated close to the surface,
highlighting the corners, thus best characterizing the
object’s shape.

Figure 5: Qualitative comparison. Columns 1 and 2
present keypoints estimated by ULCS and SM, respec-
tively. Columns 3 and 4 show the keypoints estimated
by SC3K. It can be observed that some of keypoints of
the ULCS are estimated outside the object (airplane).
The keypoints estimated by SC3K best characterize the
object’s shape, as they are estimated on the surface and
cover the complete object.

4.2. Qualitative comparison with Intra-class objects

This section shows the qualitative results of the SC3K
for intra-class objects. Four objects (in random poses)
of the different categories are shown in Fig. 6. It can be
observed that the keypoints are proximal to the original
PCDs, semantically in order (coherent) and pointing to
the sharp edges of the objects.

4.3. Visualisation of the noisy PCDs

This section shows the qualitative results (extension
of the Fig. 5a in the main paper) of SC3K for different
noisy PCDs. We add the Gaussian noise of different
scales to the original PCDs of different categories. The
noise scale is written in the beginning of every row
where “0.00” mean original PCD without noise. The
estimated keypoints are shown in Fig. 7. It can be
observed that the proposed SC3K remains successful
in estimating the 3D keypoints from the noisy PCDs.
Moreover, the keypoints are always estimated close to
the outermost points in the PCDs (i.e. close to the
noisy surface). However, the accuracy decreases with
the increase in the noise scale.

4.4. Visualisation of the Down-sampled PCDs

This section presents the performance of SC3K for
down-sampled PCDs as an extension of the results
shown in the Fig. 5b of the main paper. For decimating
the PCD, we use the Farthest Point Sampling (FPS)
as used in [5] to sample points from original PCDs
for different sampling ratios. We test our pre-trained
network to estimate the 3D keypoints from the down-
sampled PCDs. The results are shown in Fig. 8. The
figure is horizontally divided to fix all the objects on one
page. Each column presents the results of a different
object. The sampling ratio is shown at the beginning of
every row. The “0×” shows the original PCD without
sampling (zero times sampling). It can be observed
that the SC3K has estimated approximately accurate
keypoints for the down-sampled PCDs. However, the
keypoints are not estimated at the same positions as
the positions of the corresponding keypoints of the
original PCDs (without sampling) when the PCDs are
scaled 32 times (32×). The 32× sampling means a PCD
containing only 64 points, considering that the original
PCD contains 2048 points.
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Figure 7: Performance of the proposed approach for the noisy PCDs. Gaussian noise of different scales (as mentioned
at the beginning of every row) is added to the input PCDs. “0.00” represents the original PCD (without noise).
The SC3K remains successful in estimating the semantically consistent keypoints for noisy PCDs. However, the
accuracy has decreased with an increase in the noise scale.



Figure 8: Performance of our method for down-sampled PCDs. The input PCDs are down-sampled for different
scales, as mentioned at the beginning of every row. The “0×” shows the original PCDs. The proposed SC3K
remains successful in estimating the approximately accurate 3D positions of the keypoints.


