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#convs 0 1 2 3 4 5
AP 41.8 42.3 41.9 42.1 42.3 42.0

Table 1: Influence of number of convolutions in auxiliary head.

λ1 λ2 #epochs AP APS APM APL

0.25 2.0 36 46.2 28.3 49.7 60.4
0.5 2.0 36 46.6 29.0 50.5 61.2
1.0 2.0 36 46.8 28.1 50.6 61.3
2.0 2.0 36 46.1 27.4 49.7 61.4
1.0 1.0 36 46.1 27.9 49.7 60.9
1.0 2.0 36 46.8 28.1 50.6 61.3
1.0 3.0 36 46.5 29.3 50.4 61.4
1.0 4.0 36 46.3 29.0 50.1 61.0

Table 2: Results of hyper-parameter tuning for λ1 and λ2.
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Figure 1: The relation matrix for the DETR head, ATSS
head, and Faster-RCNN head. The detector is Co-
Deformable-DETR (K = 2) with ResNet-50.

A. More ablation studies

The number of stacked convolutions. Table 1 reveals
our method is robust for the number of stacked convolu-
tions in the auxiliary head (trained for 12 epochs). Con-
cretely, we simply choose only 1 shared convolution to en-
able lightweight while achieving higher performance.

Loss weights of collaborative training. Experimental re-
sults related to weighting the coefficient λ1 and λ2 are pre-
sented in Table 2. We find the proposed method is quite
insensitive to the variations of {λ1, λ2}, since the perfor-
mance slightly fluctuates when varying the loss coefficients.
In summary, the coefficients {λ1, λ2} are robust and we set
{λ1, λ2} to {1.0, 2.0} by default.
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Figure 2: Distances among 7 various heads in our model
with K = 6.

The number of customized positive queries. We compute
the average ratio of positive samples in one-to-many label
assignment to the ground-truth boxes. For instance, the ra-
tio is 18.7 for Faster-RCNN and 8.8 for ATSS on COCO
dataset, indicating more than 8× extra positive queries are
introduced when K = 1.

Effectiveness of collaborative one-to-many label assign-
ments. To verify the effectiveness of our feature learning
mechanism, we compare our approach with Group-DETR
(3 groups) and H-DETR. First, we find Co-DETR performs
better than hybrid matching scheme [2] while training faster
and requiring less GPU memory in Table 6. As shown in Ta-
ble 8, our method (K = 1) achieves 46.2% AP, surpassing
Group-DETR (44.6% AP) by a large margin even without
the customized positive queries generation. More impor-
tantly, the IoF-IoB curve in Figure 2 demonstrates Group-
DETR fails to enhance the feature representations in the en-
coder, while our method alleviates the poorly feature learn-
ing.

Conflicts analysis. We have defined the distance between
head Hi and head Hj , and the average distance of Hi to
measure the optimization conflicts in this study:

Si,j =
1

|D|
∑
I∈D

KL(C(Hi(I)), C(Hj(I)), (1)

Si =
1

2(K − 1)

K∑
j ̸=i

(Si,j + Sj,i), (2)



where KL, D, I, C refer to KL divergence, dataset, the input
image, and class activation maps (CAM) [8]. In our imple-
mentation, we choose the validation set COCO val as D
and Grad-CAM as C. We use the output features of DETR
encoder to compute the CAM maps. More specifically, we
show the detailed distances when K = 2 and K = 6 in Fig-
ure 1 and Figure 2, respetively. The larger distance metric
of Si,j indicates Hi is less consistent to Hj and contributes
to the optimization inconsistency.

B. More implementation details

One-stage auxiliary heads. Based on the conventional
one-stage detectors, we experiment with various first-stage
designs [10, 4, 9, 3, 5] for the auxiliary heads. First, we use
the GIoU [7] loss for the one-stage heads. Then, the num-
ber of stacked convolutions is reduced from 4 to 1. Such
modification improves the training efficiency without any
accuracy drop. For anchor-free detectors, e.g., FCOS [9],
we assign the width of 8 × 2j and height of 8 × 2j for the
positive coordinates with stride 2j .
Two-stage auxiliary heads. We adopt the RPN and RCNN
as our two-stage auxiliary heads based on the popular
Faster-RCNN [6] and Mask-RCNN [1] detectors. To make
Co-DETR compatible with various detection heads, we
adopt the same multi-scale features (stride 8 to stride 128)
as the one-stage paradigm for two-stage auxiliary heads.
Moreover, we adopt the GIoU loss for regression in the
RCNN stage.
System-level comparison on COCO. We first initialize
the ViT-L backbone with EVA-02 weights. Then we per-
form intermediate finetuning on the Objects365 dataset us-
ing Co-DINO-Deformable-DETR for 26 epochs and reduce
the learning rate by a factor of 0.1 at epoch 24. The ini-
tial learning rate is 2.5 × 10−4 and the batch size is 224.
We choose the maximum size of input images as 1280 and
randomly resize the shorter size to 480−1024. Moreover,
we use 1500 object queries and 1000 DN queries for this
model. Finally, we finetune Co-DETR on COCO for 12
epochs with an initial learning rate of 5 × 10−5 and drop
the learning rate at the 8-th epoch by multiplying 0.1. The
shorter size of input images is enlarged to 480−1536 and
the longer size is no more than 2400. We employ EMA and
train this model with a batch size of 64.
System-level comparison on LVIS. In contrast to the
COCO setting, we use Co-DINO-Deformable-DETR++ to
perform intermediate finetuning on the Objects365 dataset,
as we find LSJ augmentation works better on the LVIS
dataset. A batch size of 192, an initial learning rate of
2× 10−4, and an input image size of 1280×1280 are used.
We use 900 object queries and 1000 DN queries for this
model. During finetuning on LVIS, we arm it with an addi-
tional auxiliary mask branch and increase the input size to

1536×1536. Besides, we train the model without EMA for
16 epochs, where the batch size is set to 64, and the initial
learning rate is set to 5×10−5, which is reduced by a factor
of 0.1 at the 9-th and 15-th epoch.
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