
Re:PolyWorld - A Graph Neural Network for Polygonal Scene Parsing

Supplementary Material

In the following pages, we report the hyperparameters of
the model and present additional qualitative and quantita-
tive results of Re:PolyWorld for building extraction, floor-
plan reconstruction, and wireframe parsing. Specifically,
we present a comprehensive evaluation of our approach,
which includes a comparative analysis with state-of-the-art
methods, such as Frame Field Learning (FFL) [3] and Poly-
World [13] for building extraction, Holistic Edge Attention
Transformer (HEAT) [5] for floorplan reconstruction, and
Holistically Attracted Wireframe Parsing (HAWPv2) [10].
Moreover, we provide detailed quantitative tables, examples
of failure cases, as well as an ablation study to evaluate the
proposed edge-aware GNN.

Architecture and Hyperparameters
Re:PolyWorld utilizes a Residual Recurrent U-Net

model [1] as feature extractor. The feature map F generated
by the backbone, and the vertex descriptors, have D = 64
channels. We linearly sample M = 32 descriptors between
each pair of detected vertices (from vertex i to vertex j).
Λ reduces the size of the descriptor by performing a lin-
ear projection RD=64 −→ RD−=16. MLPedge performs the
mapping RMD−=512 −→ RDedge=128 by receiving the con-
catenation of the reduced descriptors as input (representing
the path from vertex i to vertex j). In all our experiments
and applications, we used L = 4 edge-aware GNN layers
with 4 heads each. For the positional refinement, the off-
set is generated by limiting the maximum permitted value
to 5% of the image size by using a tanh activation function.
We trained Re:PolyWorld using the same loss hyperparam-
eters described in [13].

Certain variables have been selected based on the spe-
cific demands of the application:

• Building extraction on the CrowdAI dataset [6] is per-
formed by extracting N = 256 vertex candidates from
each image and employing a Non-Maximum Suppres-
sion (NMS) layer with kernel size of 3, since building
vertices can be located in close proximity to each other.
To prevent pooling issues in the backbone, we upsam-
pled the images in the data set from its original size of
300× 300 pixels to 320× 320 pixels.

• Floorplan and architectural reconstruction on the
Structured3D [11] and HEAT [5] data set are per-
formed by detecting N = 96 vertices. In this case,
a kernel size of 7 is used for the NMS layer.

• Wireframe parsing is realized by detecting N = 320
vertices and filtering the vertex detection map with the

Figure 1. Wireframe parsing results. Columns from left to right:
HAWPv2 [10] wireframe proposals (the color gradient encodes the
line scores from 0-red to 1-cyan), HAWPv2 filtered wireframes
with a threshold of 0.9. Re:PolyWorld wireframes predicted by
solving the linear sum assignment.

NMS layer with a kernel size of 11. For this appli-
cation, learning the refinement offset for the vertices
is not beneficial (since we aim to detect lines), there-
fore the model is just trained by minimizing Ldet and
Lmatch.

Additional results

Building extraction: Figure 3 shows a qualitative com-
parison of Re:PolyWorld, Frame Field Learning (FFL) [3],
and PolyWorld [13]. The results of these three distinct poly-
gon extraction approaches are illustrated on various scenes
from the CrowdAI [6] test set. It can be observed that
Re:PolyWorld, which employs a smaller number of ver-
tices than FFL, produces more regular contours. Further-
more, our approach provides a high degree of generaliza-
tion on complex and uncommon building shapes, precisely
detecting and connecting all the building corners, even in
the presence of severe occlusions. Visually, the results
of Re:PolyWorld and PolyWorld are comparable, however,
quantitative results (Table 1) show that Re:PolyWorld ex-
tracts building footprints more accurately, achieving higher
semantic and instance segmentation scores, due to the
joint analysis of vertices and edges. Additional results of
Re:PolyWorld on the CrowdAI data set are shown in Figure
4.

Floorplan reconstruction: Additional evaluation results
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on the Structured3D [11] data set are shown in Figure 5.
It can be seen that Re:PolyWorld generates more accurate
polygons compared to HEAT [5] and also achieves higher
recall and precision scores (Table 3). Figure 6 shows addi-
tional results produced by Re:PolyWorld for randomly sam-
pled test images of the Structured3D data set.

Wireframe parsing: We provide additional results for
wireframe parsing on indoor and outdoor scenes in Fig-
ure, 7 and Figure 8, respectively. Unlike HAWPv1 [9] and
HAWPv2 [10], Re:PolyWorld does not depend on filtering
proposals with low confidence scores. Instead, it addresses
an optimal transport problem to generate proposals. This re-
sults in a considerably lower number of detected wireframes
compared to HAWPv2, as shown in Figure 1. Due to this,
Re:PolyWorld does not excel HAWP in terms of Structural
Average Precision (sAP), but achieves state-of-the-art Re-
call performance (Table 4).

Ablation study

We conduct supplementary experiments to evaluate the
performance contribution provided by the proposed Edge-
Aware Graph Neural Network (EA-GNN). By exploit-
ing the combination of vertices and edges, Re:PolyWorld
achieves higher segmentation scores in the building extrac-
tion task compared to PolyWorld [13], as shown in Table 1.
In this experiment, we use K = 1 vertex instances, since
PolyWorld is intrinsically unable to produce more than one
connection per vertex.

We also evaluate Re:PolyWorld on the Wireframe Pars-
ing dataset [4] by either using or discarding the edge
information. This experiment is conducted by training
Re:PolyWorld using the original GNN proposed in Poly-
World, thereby eliminating the component of combined
vertex and edge information. The results show a higher
number of detected lines for our proposed edge-aware
Re:PolyWorld approach, along with boosted scores in terms
of Structural Average Precision (sAP) and Recall (Table 2).
Moreover, the original vertex-only model generates several
wrong lines, as shown in Figure 9.

Failure cases

Despite experimental evidence demonstrating that
Re:PolyWorld generates a strong set of vertices and robust
connections, it is interesting to highlight instances of fail-
ure due to the vertex detection network. Figure 2 shows
some Re:PolyWorld predictions exhibiting artifacts, result-
ing from the incomplete identification of vertices by the
backbone network. Consequently, the predicted polygons
are missing a corner and a significant portion of the object.

Figure 2. Re:PolyWorld failure cases. Generated polygons lack a
corner due to the failure of the backbone to detect a vertex, which
is highlighted in yellow in these examples.

Method edge-aware offset AP AR IoU C-IoU MTA

PolyWorld [13] no off 58.7 71.7 89.9 86.9 35.0
on 63.3 75.4 91.3 88.2 32.9

Re:PolyWorld yes off 61.7 74.0 90.6 88.1 35.1
on 67.2 78.6 92.2 89.7 31.9

Table 1. Ablation study with respect to the proposed edge-aware
attention mechanism. Results on the CrowdAI [6] test computed
for different configurations of PolyWorld [13] and Re:PolyWorld.
For fairness, Re:PolyWorld is trained using K = 1 vertex in-
stances, since PolyWorld is intrinsically incapable of generating
more than one connection per vertex.

Re:PolyWorld # lines sAP5 sAP10 sAP15 R5 R10 R15 # GT lines
GNN 66 35.9 40.4 42.7 53.7 57.0 58.6 74.2EA-GNN 83 44.9 50.2 52.7 60.8 64.6 67.1

Table 2. Ablation study with respect to the proposed edge-aware
attention mechanism. Results obtained on the Wireframe Pars-
ing [4] dataset by Re:PolyWorld in two configurations: by using
the vertex-only GNN of PolyWorld [13], and by exploiting the pro-
posed Edge-Aware GNN (EA-GNN).

Room Corner Angle
Mehtod Prec Recall Prec Recall Prec Recall
HAWP [10] 0.78 0.88 0.66 0.77 0.6 0.7
LETR [8] 0.94 0.9 0.8 0.78 0.72 0.71
HEAT [5] 0.97 0.94 0.82 0.83 0.78 0.79
Floor-SP [2] 0.89 0.88 0.81 0.73 0.8 0.72
MonteFl. [7] 0.96 0.94 0.89 0.77 0.86 0.75
Re:PolyWorld (offset off) 0.99 0.97 0.81 0.86 0.75 0.8
Re:PolyWorld (offset on) 0.99 0.97 0.81 0.86 0.77 0.82

Table 3. Floorplan reconstruction results on the Structured3D
dataset [11]. The results of PolyWorld are calculated by discarding
the refinement offsets (offset off), and refining the vertex positions
(offset on).
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Figure 3. Building extraction results on the CrowdAI [6] test dataset. Columns from left to right: ground truth annotations, Frame Field
Learning [3] results, PolyWorld [13] results, Re:PolyWorld results. PolyWorld and Re:PolyWorld annotations are obtained using the
positional refinement offset. Please zoom in for better view.
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Figure 4. Building extraction results of Re:PolyWorld on randomly sampled images from the CrowdAI [6] test dataset. Please zoom in
for better view.
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Figure 5. Floorplan reconstruction results on the Structured3D [11] test dataset. Columns from left to right: input density map, ground
truth annotations, HEAT [5] results, Re:PolyWorld discarding the positional refinement offset, Re:PolyWorld full method. Please zoom in
for better view.
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Figure 6. Floorplan reconstruction results of Re:PolyWorld on randomly sampled images from the Structured3D [11] test dataset. Poly-
gons generated by Re:PolyWorld overlaid to the input density map. Please zoom in for better view.
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Figure 7. Wireframe parsing results on the Wireframe Parsing [12] test dataset. Outdoor images are selected for this figure. Columns
from left to right: ground truth wireframes, HAWPv2 [10] predicted wireframes (the visualized lines have score > 0.9), Re:PolyWorld
predicted wireframes (the visualized lines are obtained by solving the linear sum assignment problem). Please zoom in for better view.
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Figure 8. Wireframe parsing results on the Wireframe Parsing [12] test dataset. Indoor images are selected for this figure. Columns
from left to right: ground truth wireframes, HAWPv2 [10] predicted wireframes (the visualized lines have score > 0.9), Re:PolyWorld
predicted wireframes (the visualized lines are obtained by solving the linear sum assignment problem). Please zoom in for better view.
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Figure 9. Results obtained in the Wireframe Parsing dataset [4]. On the left column: results obtained by Re:PolyWorld without using
edge information (the model runs the GNN proposed in [13]). On the right column: results obtained by Re:PolyWorld using the proposed
edge-aware GNN.

10


