Supplementary Material for
Adaptive Calibrator Ensemble: Navigating Test Set Difficulty in
Out-of-Distribution Scenarios

We first introduce the experimental setup including train-
ing details, dataset split, and computation resources. We
also report more metrics (i.e., KSE [7] and BS [1]) in Ta-
ble Al and detailed statistical test results of Table 1 in the
main paper. Then, we provide more comparative results with
Perturbation [16] in Table A5, and we report full results on
CIFAR-10-C and ImageNet-C in Table A6 and Table A7,
respectively. Lastly, we give more component analysis of
the proposed ACE method in Section D.

A. Experimental Setup
A.1. CIFAR-10 Setup

Following the protocol in [6, 12], we use 5, 000 images
from the training set of CIFAR-10 as the calibration set. We
use ResNet-20 designed for CIFAR-10 and train it using
publicly available codes in [12].

A.2. ImageNet Setup

Following the protocol in [6], we divide the validation
set of ImageNet into two halves: one for in-distribution
test; the other for learning calibration methods. We use
ResNet-50, ResNet-152, Vit-Small-Patch32-224 and Deit-
Small-Patch16-224. Their weights are publicly provided by
PyTorch Image Models (timm-0.5.4) [19].

A.3. Baseline Methods

Our proposed ACE method is used for improving post-
hoc methods (i.e., Vector Scaling, Temperature Scaling, and
Spline) on OOD test sets. For each baseline, we use the pub-
licly available codes to train the calibration model. We follow
the code and use the same training settings (such as regular-
ization, training scheduler, and training hyper-parameters).
The codes we used are:

Vector Scaling:
https://github.com/saurabhgarg1996/calibration
Temperature Scaling:
https://github.com/gpleiss/temperature_scaling

Spline:
https://github.com/kartikgupta-at-anu/spline-calibration

A.4. More Metrics for Table 1

We report the ECE (%) result in Table 1. To better prove
the effectiveness of our method, we report another two clas-
sic metrics: KSE (%) [7] and Brier Score (%) in Table A1l.
The results in table A1 shows that our method is also effec-
tive with these metrics.

A.5. The Statistical Significance Test in Table 1

We adopt the two-sample t-test, which tells whether the
performance of the baseline and baseline + ACE has a sig-
nificant difference. All methods are run for 5 times based on
5 random seeds (1, 2, 3,4, 5). Given a random seed, we use
it to randomly downsample the hard calibration set from the
original validation set. For all random seeds, the samples for
the baseline are indeed the same. However, when training a
calibrator, every mini-batch is randomly sampled and shuf-
fled, thus resulting in randomness. As reported in Table A2,
the impact of different random seeds is slight. We also adopt
the Welch’s t-test in Table A3 to validate this.

A.6. Computation Resource

We use the Pytorch-1.9.1 framework and run all the ex-
periment on one GPU (GeForce RTX 2080 Ti). The CPU is
24 Intel(R) Core(TM) 19-10920X CPU @ 3.50GHz.

A.7. Datasets

ImageNet-Validation [2] (https://www.image-net.org);
ImageNet-V2-A/B/C [15]
(https://github.com/modestyachts/ImageNetV?2);
ImageNet-Corruption [9]
(https://github.com/hendrycks/robustness);
ImageNet-Sketch [17]
(https://github.com/HaohanWang/ImageNet-Sketch);
ImageNet-Adversarial [10]
(https://github.com/hendrycks/natural-adv-examples);
ImageNet-Rendition []
(https://github.com/hendrycks/imagenet-r);

CIFAR-10 [13](https://www.cs.toronto.edu/ kriz/cifar.html);
CIFAR-10-C [9](https://github.com/hendrycks/robustness);



Table Al. We used two other metrics, Brier Score (%), KS-Error (%) [7]. We evaluate two calibrators (Temperature Scaling and Spline). All

other settings remain the same with Table 1 of the main paper.

Metric Methods ImgNet-V2-A  ImgNet-V2-B ImgNet-V2-C ImgNet-S ImgNet-R  ImgNet-Adv
UnCal 5.2260 9.5910 4.0399 24.6331 17.8626 50.8544
Temp.Scaling 4.0937 1.1129 0.8773 15.7880 10.4752 42.6302
KSE +ACE 3.0661 0.7809 0.8406 1.0386 6.7335 38.0691
Spline 4.4217 1.0765 0.8813 19.6394 13.0808 45.3623
+ACE 1.2029 0.7239 0.3483 5.8538 3.5370 31.1308
UnCal 15.7902 13.0527 11.1197 21.6672 18.0285 39.1104
Temp.Scaling 14.8083 12.6830 10.9561 17.2627 15.2080 30.3974
BS +ACE 14.7192 12.6815 10.9532 15.3793 14.3487 26.2166
Spline 14.8779 12.5798 10.8702 18.9953 16.1986 32.0494
+ACE 14.7086 12.5804 10.8640 14.9486 14.6938 18.8537

Table A2. The ¢-statistic and p values of the two-sample t-test method in Table 1 of main paper. We report the resulting statistics and p
values here, which are one-on-one corresponded to the numbers in Table 1. We regard p < 0.05 as statistically significant.

Methods ImgNet-V2-A  ImgNet-V2-B ImgNet-V2-C ImgNet-S ImgNet-R  ImgNet-Adv
Vector Sealin t-statistic 59.25 37.39 —25.14 355.60 170.03 217.22
£ P 7.31e” 12 2.87¢10 6.70e=° 4.37¢718 1.60e*° 2.25¢ 16
Temp. Sealin t-statistic 615.89 249.42 —195.10 1164.86 800.82 898.46
p: J p 5.40e 2 7.47e~ Y 5.33¢ 16 3.30e"2  6.62¢ 2" 2.63¢ 2
Soline t-statistic 120.74 —28.46 60.99 294.01 675.16 109.61
p P 2.47¢ 2.50e° 5.80e 12 2.00e™*"  2.59¢ %0 5.36e

Table A3. The #-statistic and p values of the Welch’s t-test in Table 1 of main paper. We report the resulting statistics and p values here,
which are one-on-one corresponded to the numbers in Table 1. We regard p < 0.05 as statistically significant.

Methods ImgNet-V2-A ImgNet-V2-B ImgNet-V2-C ImgNet-S ImgNet-R ImgNet-Adv
Vector Scalin t-statistic 59.25 37.39 —25.14 355.60 170.03 217.22
& P 4.85¢7 3.05¢~¢ 1.48¢7° 3.75e7 10 7.17e7° 2.68¢™?
Temo. Scalin t-statistic 615.89 249.42 —195.10 1164.86 800.82 898.46
p: J P 4161 1.55¢~° 4.14¢7° 3.25¢712  1.45¢ 1! 9.20e 12
Soline t-statistic 120.74 —28.46 60.99 294.01 675.16 109.61
P P 2.82¢78 9.06e 6 4.32¢7 8.02¢710 288! 4.15¢™8

B. More Comparison
B.1. Comparison with Perturbation

In Table A4, we compare our method with a recent OOD
calibration method Perturbation [16]. In Table A4, we ob-
serve that Perturbation improves the baselines on Level 5
of ImageNet- C. In fact, these test sets contain data that are
seriously out of distribution. However, for datasets that lean
towards being in-distribution, e.g., Level 1 in ImageNet-C,
Perturbation worsens the baselines. A probable reason is
that the diverse calibration set where Perturbation is trained
is closer to heavily OOD data (Level-5). In comparison,
our method (ACE) adapts to various test sets through the
weighting scheme and yields improvement with statistical
significance in most test cases.

B.2. Comparison with TransCal

In Table A5, we compare our method with a recent OOD
calibration method TranCal [18]. In Table A5, we observe
that TransCal is inferior to our method on the ImageNet-S
dataset with ResNet-50.

C. Results on ImageNet-C and CIFAR-10-C

In Table 3 of the main paper, we report the mean ECE (%)
across 16 different types of data shift at intensity 5. In ad-
dition, we report the complete ECE results on CIFAR-10-C
and ImageNet-C at intensity 5 in Table A6 and Table A7. We
observe that our method effectively improves the baselines
(Spline) and gives state-of-the-art calibration accuracy under
2 out of 3 quartiles and mean value on both CIFAR-10-C
and ImageNet-C.



Table A4. Method comparison on ImageNet-C datasets [9]. We report ECE (%) for top-1 predictions (in %) of the ResNet-152 model. For
each level of corruption (column), we report the average ECE using 25 bins with lowest numbers in bold and second lowest underlined.
ACE improves calibration performance of two post-hoc calibration methods on all datasets.

Corruption Intensity

Method Level 1 Level 2 Level 3 Level 4 Level 5
Uncalibrated 6.0684 7.8617 9.7938 12.3911 15.5049
Temperature Scaling (TS) 2.4880 2.7976 3.7996 5.1836 7.7213
Temperature + Perturbation 9.3084 8.6574 7.6707 5.7594 4.3672
Temperature + ACE 2.9733 3.1130 3.1306 3.1494 4.3034
Spline 1.8049 3.1690 5.2388 7.8672 11.0547
Spline + Perturbation 9.6207 8.1570 6.7643 5.1064 5.2777
Spline + ACE 3.6982 4.2046 4.2944 3.7231 3.9707

Table AS. Method comparison on ImageNet-V2-A, ImageNet-V2-B, ImageNet-V2-C, and ImageNet-S datasets. Following the protocol
in [18], we report ECE (%) for top-1 predictions (in %) of the ResNet-50 model.

Method ImageNet-V2-A ImageNet-V2-B ImageNet-V2-C ImageNet-S
Uncalibrated 9.50 6.23 4.31 22.32
Temperature Scaling 4.44 2.73 1.68 16.27
TransCal 12.26 4.43 1.86 8.10
Ours 3.56 2.56 1.70 7.53

Table A6. Full results on CIFAR-10-C datasets [9]. We report the lower quartile (25-th percentile), median (50-th percentile), mean and
upper quartile (75-th percentile) of ECE computed across 16 different types of data shift at intensity 5 with lowest numbers in bold and
second lowest underlined.

. Method
Metric
. Temp SVI SVI . Spline
Vanilla Scaling Ensemble SVI LLSVI AVUTS  -AvUC Spline +Ours
lower quartile 0.2121  0.0997 0.0549 0.0925  0.2027 0.0466 0.0398 0.2045 0.0783
ECE median quartile  0.3022  0.1834 0.1054 0.2146  0.3077 0.1516 0.1107  0.3007  0.1071

mean 0.3151  0.1993 0.1611 0.2389  0.3267 0.1585 0.1374 0.3382  0.1272
upper quartile 0.4148  0.2915 0.2551 0.3636  0.4246 0.2345 0.2303 0.4376  0.1522

Table A7. Full results on ImageNet-C datasets [9]. We report the lower quartile(25-th percentile), median (50-th percentile), mean and upper
quartile (75-th percentile) of ECE computed across 16 different types of datashift at intensity 5 with lowest numbers in bold and second
lowest underlined.

. Method
Metric
. Temp SVI SVI . Spline
Vanilla Scaling Ensemble  SVI  LLSVI AVUTS  -AvUC Spline +Ours
lower quartile  0.1244 0.0959  0.0503  0.0722 0.1212 0.0420 0.0319 0.0575 0.0233
ECE median quartile  0.1737  0.1392  0.0900 0.1144 0.1684 0.0807 0.0447 0.1143 0.0452

mean 0.1942 0.1600 0.0880  0.1188 0.1868 0.0800 0.0542 0.1147 0.0477
upper quartile  0.2744  0.2364  0.1264  0.1723 0.2676 0.1275 0.0696 0.1363 0.0606




Table A8. The adaptive « that we adopt in Table 1 and Table 2 of main paper.

Model  ImgNet-Val ImgNet-V2-A  ImgNet-V2-B  ImgNet-V2-C  ImgNet-S ImgNet-R  ImgNet-Adv

ResNet  0.994080 0.918328 0.972311 0.989697 0.63765  0.709984 0.682187
Vit 0.998655 0.896980 0.969018 0.98561 0.538366  0.674307 0.637850
Deit 0.998741 0.912270 0.967555 0.999048 0.612748  0.648445 0.618136

Table A9. Method comparison on CIFAR-10-C and ImageNet-C datasets with ResNet-20 and ResNet-50, respectively. Following the
protocol in [14], we report mean ECE (%) across 16 different types of data shift at intensity 5 with lowest numbers in bold and second
lowest underlined.

. SVI . Spline Spline
Dataset Vanilla SVI _AVUC Spline +ACE +Estimation
CIFAR-10-C 0.1942 0.2389 0.1374 0.3382  0.1264 0.1298
ImageNet-C 0.3151 0.1188 0.0542 0.1147  0.0477 0.0576

Table A10. Calibration performance of our method integrated with Temperature Scaling on one in-distribution test set and six OOD test sets.
ECE (25bins, %) for top-1 predictions. Here we D, with the sample size of Dy, (5, 884).

Method ImgNet-Val ImgNet-V2-A ImgNet-V2-B ImgNet-V2-C ImgNet-S ImgNet-R ImgNet-Adv
Temp.Scaling  1.9670 4.3571 2.7234 1.7880 15.6735  10.3832 42.5225
+ACE 1.9623 3.4842 2.5458 1.6764 10.3131  6.6726 37.9957

Table A11. Calibration performance of our method integrated with Temperature Scaling on one in-distribution test set and six OOD test sets.
ECE (25 bins, %) for top-1 predictions. We use LCNet-050 and TinyNet-E, which have 60.094% and 59.856% top-1 accuracy, respectively
on the validation set of ImageNet dataset. (Note IN is short for ImageNet)

Model Method IN-Val IN-V2-A IN-V2-B IN-V2-C IN-S IN-R  IN-Adv

Temp.Scaling 1.8293 6.6047 2.9681 1.6949 20.3415 18.9839 43.1683
+ACE 1.8238 4.8591  2.2639 1.7516 14.0055 15.3397 39.2584

Temp.Scaling 1.3888 6.8949 2.7991 1.7194 22.4438 20.7810 41.3513
+ACE 1.3857 5.4262 2.4606 1.8311 17.1741 17.7259 38.0800

LCENet-050

TinyNet-E

Table A12. Calibration performance of our method integrated with Temperature Scaling and Spline on the in-distribution and OOD
iWildCam-WILDS dataset. ECE (25bins, %) for top-1 predictions and ResNet-50 classifier is used.

Dataset Uncal. Temp.Scaling Temp.Scaling+Ours Spline Spline+Ours
iWildCam-WILDS-ID 14.2701 2.6786 2.5833 3.8142  3.6965
iWildCam-WILDS-OOD 13.5552 4.8231 3.9738 4.9902  4.8425

Table A13. Calibration performance of different combination schemes. ECE (25bins, %) for top-1 predictions is reported. Spline baseline
and ResNet-152 classifier is used.

Method ImageNet-V2-A ImageNet-V2-B ImageNet-V2-C ImageNet-S ImageNet-R ImageNet-Adv
Uncal. 9.5016 6.2311 43117 24.6332 17.8621 50.8544
Zy ® z}l_a 5.0091 2.7478 1.3357 6.4506 10.2066 28.4341

a-zo+(1—a)- 2z, 2.8201 2.0235 1.0550 6.9264 6.8533 31.0926




Table A14. Following the protocol in Gong et al. [4], we evaluate
proposed ACE under domain generalization setting. We use Spline-
based ACE and report ECE (25 bins, %) for top-1 predictions.

Test Set  Uncalibrated Gong et al. [4] ACE (Spline)
A—C 11.84 12.53 4.82
A—P 6.81 5.56 2.84
A—R 4.31 6.25 3.77

D. More Component Analysis

D.1. An Alternative Method

In L210-216 of the main paper, we mentioned that a
possible way to calibrate OOD data is to estimate its diffi-
culty and create a calibration set that has a closer difficulty
level with the OOD test dataset. Moreover, according to
Sec. 3.5 of the main paper, the average confidence score
could serve as an unsupervised indicator to the degree of
how out-of-distribution a test set is [5]. Here, we propose
another post-hoc calibration method for OOD calibration.
Specifically, we first estimate the error rate of a test set [3]:

errorp,.., = (1—Acc(D,))+(avgConf(D,)—avgConf(Drest)).
(a-1)

Thus, we can compute dp,, ., as:

ETTOT Dyt

ADyesr = (a-2)

1—errorp,..,
According to Table A9, our estimation method is also shown
to be effective. Specifically, it has the second lowest ECE on
CIFAR-10-C and is only 0.0034 higher than SVI-AvUC on
ImageNet-C.

D.2. Easy calibration set and hard calibration set
have the same number of samples for tuning
the function

The size of Dy, in our submission is 5, 884. We randomly
sample the easy calibration set D, into the same size (5, 884),
the difficulty of which remains the same due to random
sampling. We report performance calibration (ECE, %) of
Temperature Scaling and our improved version on all the
seven test sets below. The ResNet-152 classifier is used. The
results in Table A 10 show that our method remains beneficial,
i.e., achieving lower ECE when combined with Temperature
Scaling, when the easy and the hard calibration sets have
the same size. The results show that our method remains
beneficial, i.e., achieving lower ECE when combined with
Temperature Scaling, when the easy and the hard calibration
sets have the same size.

D.3. The original calibration set is not easy

In Sec. 3.5 of main paper, we mentioned that difficulty is
a relative concept and depends on the classifier. Note that for

a weaker classifier, a certain dataset will be harder. With this
in mind, we experimented with two weaker classifiers, (i.e.,
harder D,) and observed that our method is still effective.
Specifically, we adopt LCNet-050 and TinyNet-E, which
have 60.094% and 59.856% top-1 accuracy, respectively on
the ImageNet-Val dataset. We apply Temperature Scaling
with the proposed method to the two classifiers and report
calibration performance (ECE, %) below. These results
in Table A11 show that our method consistently improves
Temperature Scaling when the “easy calibration set” has
high difficulty (i.e., is not easy).

D.4. More types of OOD test sets

We further provide the calibration results (ECE, %)
on another challenging and diverse dataset iWildCam-
WILDS [11] with the ResNet-50 classifier. iWildCam-
WILDS is an animal species classification dataset, where
the distribution shift arises due to changes in camera angle,
lighting, and background. Table A12 shows that our method
can also improve the calibration performance on iWildCam-
WILDS, especially, improves temperature scaling by 0.9%
decrease in ECE on the OOD test set.

D.5. Combination scheme of adaptive weight o

In the experiment section, we show the effectiveness of
the simple linear combination of these two extreme log-
its. We further test another combination scheme in this
section. According to Table A13, it decreases ECE (%) of
uncalibration but is slightly worse than current scheme on
ImageNet-V2 and ImageNet-R.

D.6. ACE under the domain generalization setting

In L497-L503 of main paper, we discussed the application
scenarios where we have access to calibration datasets from
multiple domains. Here, we evaluate our ACE with Spline
baseline under domain generalization setting, where multiple
labeled source domains are given. Table A14 shows ACE
achieves lower ECE with Gong et al. [4].

References

[1] Glenn W Brier. Verification of forecasts expressed in terms
of probability. Monthly weather review, 78(1):1-3, 1950.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248-255. Ieee, 20009.

[3] S. Garg, S. Balakrishnan, Z. C. Lipton, B. Neyshabur, and
H. Sedghi. Leveraging unlabeled data to predict out-of-
distribution performance. 2022.

[4] Yunye Gong, Xiao Lin, Yi Yao, Thomas G Dietterich, Ajay
Divakaran, and Melinda Gervasio. Confidence calibration for
domain generalization under covariate shift. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 8958-8967, 2021.



(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

(16]

(17]

Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor
Darrell, and Ludwig Schmidt. Predicting with confidence
on unseen distributions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1134—
1144, 2021.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In International
Conference on Machine Learning, pages 1321-1330. PMLR,
2017.

Kartik Gupta, Amir Rahimi, Thalaiyasingam Ajanthan,
Thomas Mensink, Cristian Sminchisescu, and Richard Hart-
ley. Calibration of neural networks using splines. In Interna-
tional Conference on Learning Representations, 2021.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The many faces of robust-
ness: A critical analysis of out-of-distribution generalization.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 8340-8349, 2021.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural
network robustness to common corruptions and perturbations.
Proceedings of the International Conference on Learning
Representations, 2019.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt,
and Dawn Song. Natural adversarial examples. CVPR, 2021.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips,
Irena Gao, et al. Wilds: A benchmark of in-the-wild distribu-
tion shifts. In International Conference on Machine Learning,
pages 5637-5664. PMLR, 2021.

Ranganath Krishnan and Omesh Tickoo. Improving model
calibration with accuracy versus uncertainty optimization. Ad-
vances in Neural Information Processing Systems, 33:18237—
18248, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David
Sculley, Sebastian Nowozin, Joshua V Dillon, Balaji Laksh-
minarayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset
shift. In Proceedings of the 30th International Conference on
Neural Information Processing Systems, 2019.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-
agenet? In International Conference on Machine Learning,
pages 5389-5400. PMLR, 2019.

Christian Tomani, Sebastian Gruber, Muhammed Ebrar Er-
dem, Daniel Cremers, and Florian Buettner. Post-hoc uncer-
tainty calibration for domain drift scenarios. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10124-10132, 2021.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. Learning robust global representations by penalizing
local predictive power. In Advances in Neural Information
Processing Systems, pages 1050610518, 2019.

[19] Ross

[18] Ximei Wang, Mingsheng Long, Jianmin Wang, and Michael

Jordan. Transferable calibration with lower bias and vari-
ance in domain adaptation. Advances in Neural Information
Processing Systems, 33:19212-19223, 2020.

Wightman. Pytorch ~ image  mod-
els. https://github.com/rwightman/
pytorch-image-models, 2019.



