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In this supplementary material, we demonstrate more
experimental results and implementation details of our
method.

A. More Experimental Results

A.1. Parameter Analysis

The cluster contrastive loss weight λ. We analyze the
weight λ of cluster contrastive loss LDCP (Eq. 8) in
the overall loss LDCMIP (Eq. 10) on Market-1501 and
MSMT17 in Figure 1. λ controls the proportion of the clus-
ter contrastive loss and instance contrastive loss. When λ
is small and the instance contrastive loss is weighted more
heavily, the performance on both datasets drops signifi-
cantly, especially for MSMT17. However, when λ is large
and the cluster contrastive loss is weighted more heavily,
the model still achieves good performance. This suggests
that, even after the inclusion of instance-level contrastive
learning, cluster-level contrastive learning still contributes
more to performance, and that the inter-instance relation-
ships learned based on multi-instance proxies are comple-
mentary to the inter-class relationships learned based on
discrepant cluster proxies. We set λ = 0.5 because the
model achieves the best performance on both datasets at that
value.
The distance threshold for DBSCAN clustering. In DB-
SCAN [3], the clustering threshold is the maximum dis-
tance that two samples can have from one another and still
be considered neighbors. A larger distance threshold may
result in samples with the same ground truth being incor-
rectly merged, while a smaller distance threshold may re-
sult in incorrect splits. Figure 2 shows the sensitivity of our
DCMIP to the distance threshold. We find that the smaller
threshold is more suitable for the relatively small dataset
Market-1501, while the larger threshold is more suitable
for the relatively large MSMT17. The optimum distance
threshold on Market-1501 and MSMT17 is 0.45 and 0.7,
respectively. Although different methods may have differ-
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Figure 1. Parameter analysis of the loss weight λ on Market-1501
and MSMT17.
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Figure 2. Parameter analysis of the distance threshold in DBSCAN
clustering on Market-1501 and MSMT17.

ent optimal thresholds on the same dataset, this conclusion
is consistent with recent works. The state-of-arts method
PPLR [1] set the threshold to 0.6 for Market-1501 and 0.7
for MSMT17, and ISE [4] set it to 0.4 for Market-1501 and
0.7 for MSMT17.
The start epoch for instance-level contrastive learning.
Considering the poor quality of the representations learned
by the model in the early training stage and that the hard
samples at this point may be meaningless [5], we specify
to maintain multi-instance proxies and perform global hard
sample mining from the 21st epoch (i.e., Eins = 20). We
also analyze the case of starting from the 1st epoch, the 11th
epoch, the 31st epoch, and the 41st epoch on Market-1501
and MSMT17. As shown in Table 1, compared with the
case of only performing cluster-level contrastive learning
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Figure 3. Four clustering evaluation metrics over different epochs for the baseline and our DCMIP on (a) Market-1501 and (b) MSMT17
datasets.

Start epoch Market-1501 MSMT17
mAP top-1 mAP top-1

DCMIP w/o MIP 85.4 93.7 37.5 68.0
Epoch 1 80.1 91.3 36.1 64.2

Epoch 11 84.3 92.8 37.7 65.7
Epoch 21 86.7 94.7 40.9 69.3
Epoch 31 86.4 94.7 39.7 68.2
Epoch 41 86.1 94.3 39.3 68.1

Table 1. Parameter analysis on the start epoch of maintaining
multi-instance proxies and global hard negative sample mining.

throughout the whole training process (DCMIP w/o MIP),
the mAP and top-1 decrease on both datasets when start ing
from the 1st epoch and the 11th epoch. Moreover, the accu-
racy of beginning from epoch 1 decreases more significantly
than from epoch 11. This indicates that the features learned
in the early training stage are indeed unreliable and the hard
samples are meaningless. The emphasis on these samples
results in the wrong optimization direction at the beginning,
which leads to performance degradation. Global hard sam-
ple mining based on multi-instance proxies starting from
epoch 21, epoch 31, and epoch 41 improve performance to
varying degrees. We speculate that this is because the em-
bedding space structure learned by the model in the middle
and late training stages already has a certain degree of re-

Hardness of samples Market-1501 MSMT17
mAP top-1 mAP top-1

Hardest 86.7 94.7 40.9 69.3
Semi-hard 86.3 94.4 39.1 69.0

Easiest 85.8 94.3 38.0 67.9
Table 2. Comparison of the hardness of positive and negative sam-
ples in the instance contrastive loss.

Method Market-1501 MSMT17
mAP top-1 mAP top-1

DCMIP w/ fθm 86.7 94.7 40.9 69.3
DCMIP w/o fθm 81.7 92.1 33.4 60.3

Table 3. Comparison of with and without the momentum encoder
fθm .

liability and the hard samples mined at this time are truly
informative samples. In addition, we compare choosing
the hardest, semi-hard, easiest positive and negative sam-
ples from epoch 21 in Table 2. The results shows that the
benefits of the hardest samples outweigh the impact of label
noise in the middle and later training stage. Choosing less
hard samples to avoid noise will instead miss some valuable
information.
The effectiveness of the momentum encoder. We main-
tain K = 16 instance proxies for each cluster. Considering
the large number of instance proxies and the fact that only a
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Figure 4. Each triplet of a person includes, from left to right, the
original image, action map of DCMIP, and action map of the clus-
ter uni-proxy baseline. These images suggest that our DCMIP
prefers to focus on discriminative visual cues (e.g., hat, bag, and
clothing patterns) and treats other cues (e.g., legs) as intra-class
commonalities.

small fraction of classes can be updated in an iteration, we
follow MoCo to maintain the consistency of the negative in-
stance proxies with the momentum encoder fθm . In Table 3,
we compare the cases with and without the momentum en-
coder on Market-1501 and MSMT17. When without the
momentum encoder, the instance proxies are initialized and
maintained by the encoder. The experimental results show
that not using the momentum encoder leads to significant
performance degradation on both datasets, so maintaining
the consistency of negative instance proxies is essential.

A.2. Clustering Quality

As shown in Figure 3, we evaluate the clustering quality
of model features on Market-1501 and MSMT17 during the
the training process for baseline and our DCMIP, respec-
tively. We use four clustering evaluation metrics from [2]:
Fowlkes-Mallows index, Adjusted Rand index, Adjusted
Mutual Information, and Adjusted Mutual Information. For
all metrics, the higher the value, the better the clustering
quality. The experimental results show that our method is
effective in improving the cluster quality on both datasets
and helps the model learn more discriminative representa-
tions. In addition, the clustering quality of Market-1501 is
significantly higher than that of MSMT17.

A.3. Qualitative analysis

Figure 4 demonstrates the activation maps of baseline
and DCMIP on Market-1501. Compared to the baseline,
for the same person, the model of DCMIP tends to focus on
cues that distinguish the person from the others (e.g., hat,

bag, and clothing patterns), while cues that are not highly
discriminative (e.g., legs) are considered as a commonal-
ity of the person and are not emphasized. Therefore, our
DCMIP is more beneficial to help the model learn represen-
tations with high intra-class similarity and high inter-class
variance.

B. Algorithm Details
The algorithm details are provided in Algorithm 1.

Algorithm 1: Discrepant and multi-instance proxies for
purely unsupervised person Re-ID.

Input : Unlabeled training set D, an encoder fθ, a
momentum encoder fθm , max epoch Emax, max
iterations Imax, the start epoch Eins to maintain
MIP, loss weight λ, the update policy.

Output: Trained momentum encoder fθm .
1 for epoch = 1 to Emax do
2 DBSCAN cluster on features encoded by fθ and get

pseudo labeled dataset D′;
3 Construct a memory bank M with cluster centroids as

cluster proxies;
4 if epoch > Eins then
5 Initialize fθm with the parameters of fθ;
6 Add instance features encoded by fθm to M as

instance proxies for each cluster;
7 for iter = 1 to Imax do
8 Select the global top-N hardest negative

samples from M;
9 Train fθ with the total loss in Eq. 11;

10 Update fθm by Eq. 3 and instance proxies;
11 end
12 else
13 for iter = 1 to Imax do
14 Train fθ with cluster contrastive loss Eq. 8;
15 end
16 end
17 Update cluster proxies according to the update policy;
18 end

C. More Implementation Details
Our code is implemented based on Pytorch. Training is

done on 4 NVIDIA GeForce RTX 3090 GPUs, and only one
GPU is used for inference. We use random flipping, random
cropping, and random erasing for data augmentation. For
DBSCAN, we compute the Jaccard distance based on the
k-reciprocal encoding, where k is set to 30. The minimum
number of neighbors for a core point in DBSCAN is set
to 4. In each epoch, we train the model for 200 iterations.
Each iteration contains forward propagation, network pa-
rameter updates during backward propagation, and updates



for cluster proxies or both cluster proxies and instance prox-
ies according to the start epoch of instance-level contrastive
learning. Considering that the momentum encoder is more
robust than the encoder and has better performance in ex-
periments, we use the momentum encoder for inference.
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