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1. Appendix

Here we add additional qualitative results and proofs
to support the work in the main manuscript. We will re-
fer to sections, equations, figures, and tables in the main
manuscript with the prefix “M-”, while referring to those
in the appendix with “A-”. We start by providing additional
details about ERGO-12 and GWD in Sec. A-1.1 and include
two proofs regarding the robustness of Gromov-Wasserstein
Discrepancy (GWD) in Sec. A-1.2. Afterward, we provide
more results with fewer optimized channels in Sec. A-1.3.
Finally, we show the qualitative results of our method on
the Gen1 and 1 Mpx datasets in Sec. A-1.4.

1.1. Additional Details on ERGO-12 and GWD

ERGO-12 details: We provide more details of our op-
timized representation in Fig. A-2. As can be seen from
the top sub-figure, we show the optimized channels in more
detail than in Figure M-7. At each new step, there is a de-
crease in GWD, which demonstrates that additional chan-
nels reduce the distance. We calculated GWD on the Gen1
[1] validation dataset, which contained 100 samples, and
plotted the results as dashed horizontal lines for chosen rep-
resentations. The blue line shows the performance of the
optimization process after each channel addition. We can
observe that, for example, our optimized representation out-
performs the Voxel Grid after seven channels and MDES
after nine channels. Furthermore, we found that the opti-
mization process initially selected the time function, which
capitalizes on the high temporal resolution of event cameras
to minimize GWD. Subsequently, counts and polarity were
used.

In the bottom sub-figure of Fig. A-2, we visualize the
channels of ERGO-12 (our optimized representation after
12 channels). For visualization, we min-max normalized
the channels within the range of 0-255. Each channel em-
phasizes different parts of the image. For instance, the last
channel highlights the left edges of the pedestrian, while the
seventh channel emphasizes the right part. Our optimization
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process enables us to capture as much information as possi-
ble at different scales and resolutions (spatial and temporal),
which is highly advantageous when training with common
object detectors. The optimized representation achieves an
mAP of over 50% on the Gen1 dataset, and it represents the
first non-recurrent neural network architecture that scores
over 40% mAP on the 1 Mpx [2] dataset.
Mathematical properties of the GWD: The GWD intro-
duced in [3] and used in this work does not satisfy all ax-
ioms of a distance measure and is thus not a metric. It is a
generalization of the GW Distance that is specifically de-
signed for spaces where an L2 metric comparison is not
suitable, as in this work where we compare raw events
and representations. [3] showed that using KL-divergence
(Eq. 9) with the kernel in Eq. 7 can effectively discard out-
liers, which we leverage in our work. Due to this more gen-
eral formalism, the GW Discrepancy does not satisfy sym-
metry, or the triangle inequality (due to the KL-Divergence
in Eq. 9), but ensures non-negativity, and is 0 only for equal
sets. Absolute scalability is also not satisfied (see Eq. 7),
but is not a common property of distance measures.

1.2. Invariances of the GWD for Events

In this section, we will go over some basic properties of
the GWD for events. In particular, we will show that it is in-
variant to affine feature transformations, concatenation with
a constant, and duplication of the features. For clarity, we
repeat here the definition of the GWD for events, following
Eq. M-5:
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with similarity matrices for Eqs. M-7 and M-8.

Ce
ik = e

−∥ei−ek∥2

2h2σ2
e , Cf

jl = e

−∥fxj −fxl∥
2

2h2σ2
f (2)

σ2
e = mean

i<j
∥ei − ej∥2, σ2

f = mean
i<j

∥fxi − fxj∥2. (3)



Affine transformation: We expect that if we apply an
affine transformation to the event representation, the score
should not change since information in the representation
remains distinctive. Moreover, we do not want the GWD to
be sensitive to the scale of the feature. We see that replacing
representation features with
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We see that the norms and data-dependent variances then
transform as
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which shows that the similarity matrix does not change. The
minimizer of Eq. M-5 thus also does not change, which
means the GWD is invariant to this affine transformation.
This invariance is only possible through the use of a data-
dependent variance, and thus highlights its advantage.
Invariances to Concatenation In the case of concatena-
tion, we consider the following transformation:

f∗
x = [fx∥cx] (12)

where [.∥.] denotes concatenation, and cx ∈ RC denotes a
pixel dependent additional feature. Again, we find that only
the similarity matrix Cf

jl is affected, and in particular, only
the norm and variance, which become:
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We will consider two special cases: cx = c, a constant vec-
tor, and cx = fx the same feature. In the first case, the
additional terms above become 0, meaning that the norm
does not change, and thus the metric stays the same. In the
second case, the norm transforms as in the affine case, mul-
tiplying the squared norm and variance by 2. For the same
reasons as before, the metric also stays the same. General-
izing this result to more general cx remains future work.

Figure 1: Correlation of the Gromov-Wasserstein Discrep-
ancy with the mAP (higher is better) for object detection on
Gen1 [1] (top) and 1 Mpx [2] (bottom) datasets. ERGO-12,
ERGO-9, and ERGO-7 represent our optimized representa-
tions with twelve, nine, and seven channels. The mAP is re-
ported on the validation set, while the Gromov-Wasserstein
Discrepancy is reported on the Gen1 validation dataset with
100 chosen samples.

1.3. Fewer optimized channels

Figure 1 depicts a correlation between the GWD (given
on the x-axis, computed on the Gen1 validation dataset
with 100 samples) and the task performance (mAP on ob-
ject detection task). Since the Swin V2 backbone outper-
forms all other backbones, it is the only backbone shown
in the plot, and the 2D Histogram, which is the poorest-
performing method, is omitted. The results demonstrate
that our optimized representation with nine and seven chan-
nels performs better than MDES and Voxel Grid, respec-
tively, which is consistent with the findings in Figure 2.
Furthermore, we observe that the results on 1 Mpx corre-
late with GWD computed on the Gen1 validation dataset
with 100 samples, which highlights the generalization ca-
pabilities of our approach.

1.4. Qualitative results

We present qualitative object detection results on the 1
Mpx and Gen1 datasets in Figs. 3 and 4, respectively. Our
approach exhibits the ability to detect objects that are not
present in the ground truth.



Figure 2: Visualization of the channels of ERGO-12, min-max normalized in the range 0-255. The channels are ordered in
row-major order, and the hyperparameters selected are shown in the top left of each subfigure.
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Figure 3: Qualitative results of our method with ERGO-12 input on the 1 Mpx [2] dataset. (top row) predictions, and (bottom
row) ground truth. Note that sometimes our method detects objects that do not appear in the ground truth.
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Figure 4: Qualitative results of our method with ERGO-12 input on the Gen1 [1] dataset. (top row) predictions, and (bottom
row) ground truth. Note that sometimes our method detects objects that do not appear in the ground truth.
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