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In this supplementary document, we first give more
descriptions of the proposed dataset Two-hand 500K in
Sec. A. Then, we separately introduce how to overlay mesh
on the image in Sec. B and more details of training loss in
Sec. C. Finally, we show more comprehensive evaluations
of our method in Sec. D.

A. Two-hand 500K
A.1. Background.

Two-hand datasets are fewer than single-hand datasets.
Most related works rely on the well-known Inter-
hand2.6M [6] in an images-paired training manner. Even
with a large scale, there are less than 10K interaction states
in [6], which is unfriendly for building an expressive inter-
action prior. Different from prior works, we skillfully break
the dependency on images-paired data and train prior with
multimodal datasets. We also propose Two-hand 500K , a
large-scale dataset focusing on two-hand interaction. Two-
hand 500K plays a positive effect on expanding the interac-
tion states. We collect Two-hand 500K in two ways: MoCap
and Splicing.

A.2. Data from MoCap.

To accurately and quickly collect interaction states, we
use a marker-based MoCap system to capture skeleton
data, as well as the automatically annotated joint positions.
Fig. 1(a) shows MoCap equipment that contains wearable
VR eye, movable handles and interactive gloves. Among
them, the handles are used for global positioning, while the
gloves are used for local positioning. There are six wireless
inertial sensors integrated into each glove, which makes fin-
ger poses more precise. We show our capturing process in
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Figure 1. MoCap process. (a) Overview of our marker-based Mo-
Cap system; (b) Capturing skeleton data; (c) The captured skeleton
data has 16 joints for each hand, all of which are annotated auto-
matically; (d) The fitted MANO parameters; (e) Physically plausi-
ble interaction.

Fig. 1(b). When capturing, to ensure diversity, we imitate
interaction patterns from related media on the Internet and
display gestures for daily communication such as greeting,
sign language and laboring et al. The captured skeleton data
is demonstrated in Fig. 1(c), where each hand contains 16
joints. We also fit MANO parameters [7] using the inverse
kinematics algorithm (IK) to give Two-hand 500K a broader
application as shown in Fig. 1(d). The physics engine is
adopted to optimize the fitted MANO parameters to make
the interaction more physically plausible, which is shown
in Fig. 1(e).

A.3. Data from Splicing.

To erase the barrier between the single-hand and two-
hand datasets, we splice single hands to generate interac-
tion. Specifically, we pick out five single-hand datasets [6,
12, 2, 13, 10] that contain both left and right hands. We ran-
domly sample left-hand frames and right-hand frames from
these datasets and randomly splice them with random rela-



Figure 2. Splicing process. (a) Right hand is sampled from [13];
(b) Left hand is sampled from [6]; (c) Combined interaction.

tive translations. To ensure that the combinations are phys-
ically plausible and encourage proximity, we also adopt the
physics engine to refine interaction. Fig. 2 shows the splic-
ing process from two separate hands to a combination. The
right hand is sampled from [13], while the left hand is sam-
pled from [6].
Implementation details. We use Bullet [1] as our physics
simulation platform, which is used throughout the paper.
Similar to [11], we convert each hand mesh to 16 articulated
ellipsoids for better collision detection. Considering that
entanglement between two hands can lead to a long time
without reaching the target interaction states, we filter out
the states if the target interaction is not completed within
2.0s. More details can be found in [11]. In addition, when
collecting with MoCap, we set the sampling frame rate to
25fps, which is up to 120.

A.4. Quantitative evaluations for Two-hand 500K.

We also add additional quantitative evaluations for
the proposed Two-hand 500K and Interhand2.6M [6] in
Tab. 1, including the interaction volume (Inter.V), penetra-
tion depth (Pene.D) and contact ratio (Cont.R). Benefiting
from the optimization of the physics engine, the collected
interaction states are more physically plausible.

Dataset Inter.V(cm3)↓ Pene.D(cm) ↓ Cont.R(%)↓
Interhand2.6M 4.07 0.26 43.61
Two-hand 500K 1.04 0.11 16.51

Table 1. Quantitative evaluations for Interhand2.6M [6] and
Two-hand 500K . All the evaluations show that the proposed
dataset provides higher-quality interaction data.

B. Mesh Overlay

Since the joint coordinates of the interacting hands pre-
dicted by our VAE decoder are based on the root of the right
hand as the reference system, we align this estimated 3D re-
sult with the input image according to the following steps.
Considering that two-hand interaction is usually captured at
a close position to the camera, orthogonal projection is used
to model the camera in this process:
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where s is a scaling factor to convert the hand scale (e.g.
meter unit for MANO) to pixel unit. [R|t] is the camera ex-
trinsic parameter, and R is fixed as identity matrix. (uj, vj)
is estimated as the local maximum of the corresponding Hj.
Considering that {Hj}42j=1 do not attempt to obtain high po-
sitioning accuracy, those maps with a single peak are given
greater weights.

C. Loss Functions
Different hand pose representations can be estimated by

our framework. In this section, we introduce more details
of the loss functions that are used for these representations.
In the following, symbols with the hat superscripts refer to
prediction, while the star superscripts refer to ground truth.

C.1. Representations of 3D joints.

To encourage the accuracy of 3D hand joints, we use L1
distance to supervise the 3D joint positions between predic-
tion and ground truth.
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h
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where h ∈ {right, left} denotes right and left hand, i refers
to the index of hand joints.

C.2. Representations of 3D vertices.

The same loss term as 3D joints is adopted to supervise
3D hand vertices, which is defined as follows:
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where h ∈ {right, left} denotes right and left hand and i
refers to the index of hand vertices.

C.3. Representations of MANO parameters.

We use MSE loss between the estimated MANO param-
eters and ground truth. For this representation, both hand
pose and shape parameters are embedded into the interac-
tion prior.
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Normal loss. Besides the above, we also use the normal
loss as [4, 5] to promote the smoothness and reasonable-
ness of reconstruction. For a predicted triangular mesh,



Figure 3. Effectiveness of different hyperparameters. (a) Input;
(b) IAH with different variance σ, from bottom to top, variance
becomes larger; (c) IAH with different adjacency d, from bottom
to top, adjacency becomes larger.

the normal perpendicular to three adjacent edges should be
equally perpendicular to the corresponding three edges in
the ground truth.
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where the number of F is 1552, a watertight face based on
the MANO template. i, j denote the index of the vertices
V , both i and j belong to the same face of the triangu-
lar mesh. We compute the unit normal vector n∗

f from the
ground truth.
Penetration loss. For the close interaction like entangled
fingers, even with the constraints mentioned above, pene-
trations still exist. We adopt a penetration loss term based
on differentiable Signed Distance Field (SDF) [3, 8] to pun-
ish penetration. According to the definition of the SDF, we
know that a positive value is assigned if a vertex (x, y, z) is
inside the hand surface. On the contrary, we set the SDF to
zero.

Lpene. =
∑
h

778∑
v=1

−min(SDF(x, y, z), 0), (6)

where h ∈ {right, left}, meaning that we compute SDF val-
ues for the left and right hand independently.

D. More Experiments
D.1. More qualitative results.

Besides the results reported in the main submission, we
demonstrate more results in this section to prove the satis-
factory performance of our method. As shown in Fig. 7,
we report more qualitative results on Interhand2.6M [6].
Even for those interaction states with heavy self-occlusion
or complex entanglement, the reconstruction quality is still

Figure 4. More results on [9]. (a) Input images; (b) Mesh overlay;
(c) Different views of reconstructed interaction.

Figure 5. Different hand pose representations. (a) Hand pose
representations of 3D joints; (b) Hand pose representations of 3D
vertices.

pretty good. Apart from that, we also report performance
on [9]. Although we do not train the network on it, the
reconstructed interactions are also realistic. We show the
results in Fig. 4.



σ α d MPJPE ↓ MPVPE ↓
2.0 2.0 3.0 8.91 9.12
3.0 2.0 2.5 8.67 8.84
2.0 2.5 2.5 8.53 8.69
2.0 2.0 2.5 8.34 8.51

Table 2. Ablation study of the hyperparameters. We report the
influence of hyperparameters variance σ, zoom factor α and adja-
cent regions d.

D.2. More ablation studies.

In the main submission, we have introduced the genera-
tion and effectiveness of IAH. With different variances and
adjacent regions, the hand joints can be adaptively mapped
to a certain heatmap, where the resolution is fixed in 64×64.
As shown in Fig. 3 (b), with a larger zoom factor α, the
distribution located in adjacent joints is fuzzier than in the
identity joint. Similarly, the size of adjacent region d also
affects the expression of IAH. Because a larger d causes
joints in non-interactive areas to be mapped, as demon-
strated in Fig. 3 (c). To maximize the performance of IAH,
we ablate the effect with different hyperparameters and set
two candidates for each hyperparameter, as shown in Tab. 2.
The most suitable set of hyperparameters is listed in the last
row, which balances the joints in adjacency and distribution
on them.

D.3. Different pose representations.

The proposed framework is compatible with the differ-
ent hand pose representations. As mentioned in the main
submission, three hand pose representations are considered
in our framework. Besides the representation of MANO
parameters summarized above, we show the performance
when estimating hand joints and vertices. On the left side
of Fig. 5, we report the evaluations on hand joints. At the
same time, the right side of Fig. 5 reflects the performances
on hand vertices. All of these representations have achieved
convincing results.

D.4. Failure cases.

We list two failure cases in Fig. 6, where our method can-
not reconstruct reasonable interaction. We attribute the fail-
ure to the inappropriateness of the extracted features, which
leads to incorrect sampling from the constructed interaction
prior.
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