
Supplementary material for Cross-modal Latent Space Alignment for Image to
Avatar Translation

Manuel Ladron de Guevara
Carnegie Mellon University
rldg.manuel@gmail.com

Jose Echevarria
Adobe Research

echevarr@adobe.com

Yijun Li
Adobe Research
yijli@adobe.com

Yannick Hold-Geoffroy
Adobe Research

holdgeof@adobe.com

Cameron Smith
Adobe Research

casmith@adobe.com

Daichi Ito
Adobe Research
dito@adobe.com

1. Applications
This paper does not delve into the various applications of

parametric avatars. Nonetheless, we present the ease with
which one can export avatar parameters into different en-
vironments. Compared to image-based avatars, parametric
avatars offer a wider range of potential applications. Vector-
based graphics, in particular, possess the advantage of be-
ing more readily exportable to other software programs for
animation, 3D modeling, or virtual reality. This attribute
is especially significant for game developers and animators
who frequently transfer graphics between different software
programs. An example of such applications is shown in Fig-
ure 1.

Animation. The first two images are snapshots of the
avatar produced with our method being animated in an an-
imation software. The third image shows the same avatar
in a 3D environment. Our method allows for a much more
streamlined and efficient workflow than pixel-based meth-
ods, as the avatars can be modified and used in various dif-
ferent contexts without having to create new images from
scratch.

2D to 3D. Generating a 3D counterpart from our paramet-
ric avatar is simpler than reconstructing it from pixel-based
methods. Initially, we created a template low-poly face ge-
ometry that included the head, ears, glasses, and several
hair parts. This geometry was designed such that each con-
trol point from our generated parameters had a correspond-
ing point of polygons. We also moved neighboring points
accordingly, such as adjusting the head’s size by moving
all points of the head according to the outline of the face.
Certain parameters in our avatars, such as shadows, deter-
mined the depth of the eyes. Concerning the face texture,
we adapted the 2D caricature/avatar generator to render the

(a) Animation (b) 3D

Figure 1. Applications of our system beyond images. (a) We can
export our parametric vector to animation software, and (b) 3D
modeling software

front face and some additional parts. Then, we projected it
onto the face polysurface.

2. Rendering Engine

To facilitate reproducibility, we provide a detailed expla-
nation of our rendering engine, which serves as the interme-
diary between the avatar parameter values and their corre-
sponding pixel values. Each parameter value (e.g. the x, y
coordinates of the control points defining the upper curve
of the eyelid) is bounded within a minimum and a maxi-
mum value determined based on the relative position in the
canvas. For instance, no parameter that defines an eye can
be any lower than the middle height of the face. This con-
straints are predetermined as part of the avatar design.

Our rendering engine works by drawing each component
in layers and in a specific order. Specifically, we take the
vector of parameters that correspond to the face shape, de-
noted as ȳfacialshape, and draw a set of curves that delineate
the facial outline. We then apply the base R,G,B color for
the face. Next, we update the canvas to add other facial
components such as the mouth, nose and eyes, as shown in
Figure 2.

Figure 2. Rendering composition used in our vector-graphics en-
gine. Facial parts are composited on the canvas layer by layer.

Our rendering engine, implemented in Python, is rela-
tively straightforward and utilizes the ImageDraw module
in the PIL library, which furnishes simple 2D graphics.
In particular, we use the polygon function to draw closed
shapes and compute the cubic Bezier equation to produce
smooth open curves. Additionally, we taper the endpoints
of curves to achieve a natural stroke effect. Finally, we
fill the shapes with the corresponding color and maintain
a black stroke for outlines.

3. High Resolution Samples
We append additional samples at a higher resolution at

the end of this document to further demonstrate the capabil-
ities of our model. Notably, we observe that our model is
able to generate avatars of children despite our parametric
avatar dataset not containing any children, as evidenced in
Figure 3. It is worth noting that while the image encoder Es

has been trained on a dataset that includes images of chil-
dren, specifically the FFHQ dataset [5], the parameter en-
coder and decoder Et and Dt, respectively, have not been
trained on avatar vectors corresponding to child faces. De-
spite this, our model is able to accurately generate avatars
of children, which is a testament to the effectiveness of our
parametric representation and cross-modal framework.

4. Dataset
Our original dataset contains 393 pairs of portraits and

parameters made by our artist. We have a test set of 30 pairs
of portraits and parameters. In the following paragraphs, we
first provide more details about the vector of parameters that
define an avatar, and then explain how we make artificial
transformations in the training set to get up to 9970 paired
samples.

4.1. Parametric Avatar

Our parametrization is designed to represent a wide
range of faces from different demographics with the
mininum number of parameters. Thus, we group pa-
rameters based on facial components such as ȳ :=
{ȳeyes, ȳnose, ȳmouth, ...}, as explained in main paper, and
as shown in Table 2, for a total of 629 values. All param-
eters follow a normal distribution, and before feeding pa-

Figure 3. Examples of avatars of children. Our model generalizes
to kids, even though our paired image-parameteric avatar dataset
does not contain any children.

rameters to the model, we normalize all parameters to be
in the 0-1 range, and zero out the parameters corresponding
to hair, glasses and cap, as they are retrieved from a data-
bank. The majority of parameters define x, y coordinates of
control points for cubic Beizer curves and polygons, R,G,B
color values, and line thickness. The use of shadows and
highlights make the avatar face have more or less depth,
which is found useful to represent different ethnicity.

Non-trivial facial components. Some other facial parts,
however, have more characteristics and variation than out-
lines and color, such as eyebrows. Besides the basic line
shape, eyebrows present different hairline angle, volume,
width, curviness, etc. A summary of parameters that define
the eyebrows is shown in Table 1.

4.2. Paired Dataset

Obtaining synthetic paired dataset requires performing
the same augmentation in both image and avatar modalities.
We generate a total of 9577 augmentations from our original
paired dataset with two different methods:

Distortion-based Augmentations We first make aug-
mentations for the existing images by slightly distorting fa-
cial features like eyes, head shape, nose, etc. We use Pho-
toshop’s Face Aware Liquify tool for this process. A script
bridges the results of this tool with the avatar parameters
to create the same deformation in the corresponding paired
vector of parameters. We achieve a total of 3995 paired
datapoints. We use this dataset to train our model and to
compare with previous methods that we present in the main
paper.

Interpolations We use a software that makes in-between
face photographs given two anchor photographs, A and B.
We can control the interpolation amount of A and B we
want to maintain, for example 20% of A and 80% of B. In
order to have the same interpolation in parameter space, we
make a script that interpolates between two vector of param-
eters to have matching image-parameter vector pairs. Note
that we do not interpolate hair parameters using this method
because the hair parameters do not ensure smooth interpola-
tions. This is due to the fact that some of the hair parameters
are categorical variables. For instance, hair length is a cat-
egorical value with class from 0 to 4, and hair bangs has
a binary variable which turn them on and off. In total we
make 5975 interpolations.

4.3. Unpaired Dataset

We can create a large amount of avatar parameters by
swapping different facial components from random avatars.
We synthetically create 100000 avatar vectors that do not
have a corresponding portrait photograph. For our image
encoder Es, we use FFHHQ [5] (70000 aligned faces) and
our augmented face dataset (9970 aligned faces) to have a
total of 79970 aligned portraits.

5. Model
5.1. Model Architecture

The network architecture is shown in Figure 4. Encoders
Et, Dt and mapping network F are composed by a 2-layer

MLP. The first layer is composed by a fully connected layer
followed by BatchNorm and ReLU, and the last layer is a
fully connected layer. These two networks output a 512-D
latent vector. Dt uses a Sigmoid function after the last fully
connected layer to output a 629-D vector of parameters in
the range 0-1. The image encoder Es outputs a 512-D latent
vector, and the image decoder Ds takes in a 512-D latent
vector and generate an image in 256x256 resolution.

5.2. Training

Table 3 shows the hyperparameters used during train-
ing in both stages, the unpaired and the paired stages. We
first train each modality-specific autoencoder (image and
avatar vector) independently on parallel, on large-scale un-
paired data. Once the networks converge, we discard Ds,
fix Es, Et and Dt’s weights, and train the new mapping net-
work F . Note that F is trained on paired data only.

5.3. Inference and Hair Pipeline

At inference we only have a portrait image I , and we are
interested in generating a vector of parameters that define
an avatar for this image. For this, we only use our image
encoder Es, our mapping network F , and our parameter
decoder Dt.

Our hair pipeline leverages a pretrained network
H(I) → â that takes a real photograph as input and outputs
predictions of 35 attributes of the input photograph. The list
of attributes is:

age, male, smile, beard, moustache, sideburns, facial-
hair, no glasses, reading glasses,sun glasses, swimming
goggles,roll, yaw, pitch, anger, contempt, disgust, fear, hap-
piness, neutral, sadness, surprise, bald, hair invisible, white
hair, gray hair, blond hair, brown hair, red hair, black hair,
eye makeup, lip makeup, glasses, headwear, mask.

That is, â is a 35-dimensional vector of logits. We pre-
compute a set of vectors âNi=0 corresponding to a bank of
400 hairstyles and accessories that are paired with pho-
tographs. As shown in Figure 4 in the main paper, at in-
ference, and given an image Ii, we first perform a forward
pass through our model, that is, ŷi = Dt(F (Es(Ii))) to
get the predicted avatar parameters. We then perform a
forward pass through our attribute predictor H(Ii) to get
a query vector âi. We perform K-nearest neighbors to re-
trieve the most similar âj from our databank. Because these
faces are paired with ground truth avatar parameters, we can
get the parameters corresponding to hair and accessories
(ŷhairj , ŷaccsj), respectively. We mask out the hair and ac-
cessory parameters from the predicted parameters ŷi and
paste the retrieved hair and accessory parameters from the
hair pipeline.

Background. We can match the average background
color by computing a segmentation mask Is of the input im-

Parameter Definition

Eyebrow volume Density of hair lines
Initial angle Angle of hair lines on center of the temple
Angle change Initial angle of hair varies along the eyebrow angle gradually.
Eyebrow curve Indicates the curviness of the eyebrow
Eyebrow hair width Width of each hair line
Eyebrow hair length Length of each hair line
Hair length Random Length of hair line can be randomized. This parameter indi-

cates random seed
Eyebrow hair spread The root of each hair line will be perfectly aligned if this is

zero. If bigger than zero, they will be randomly scattered.
Hair spread Control spread of hair on eyebrows.
Eyebrow hair spread Y Scatters hairlines only in Y direction to make the eyebrow

taller
Fewer hair at end Controls the number of the hair line at the edge of eyebrow
Hair spread at end Controls taper at the edge of eyebrow
Eyebrow coverage Scatters hairlines locally in the vertical direction

Table 1. Breakdown of the parameters that define the eyebrows.

Parameters [629]

Linear [512]

Linear [512]

BatchNorm
ReLU

Linear [512]

Linear [512]

BatchNorm
ReLU

Parameters [629]

Sigmoid

Image [3x256x256]

Conv 2d [64x64x64]

Residual Block [64]

BatchNorm
ReLU

Residual Block [128]

Residual Block [256]

Residual Block [512]

AvgPool

Latent [512] Latent [512]

Latent [512]

Conv 2d [3x3x3]

ConvTrans Block [512x512x4]

Tanh

Image [3x256x256]

Latent [512]

ConvTrans 2d [NxMxK]

InstanceNorm
ReLU

ConvTrans Block [512x512x4]

ConvTrans Block [512x256x4]

ConvTrans Block [256x128x4]

ConvTrans Block [128x64x4]

ConvTrans Block [64x3x4]

Latent [512]

Linear [512]

Linear [512]

BatchNorm
ReLU

Latent [512]

(a) Parameter Encoder (b) Parameter Decoder (c) Mapping Network (d) Image Encoder (e) Image Decoder (f) ConvTrans Block

Figure 4. Model architecture of the different components of our model.

age I . We use a BiseNet [13]-based network [8] to get Is.
We then calculate the mean RGB value in I’s background
to feed it to the vector graphics engine.

6. Ablation Studies

6.1. Pretrained Image Encoders Ablations

We are interested in testing the causal relationship be-
tween our face encoder and identity preservation capabil-
ities of our model. That is, how well our encoder Es

helps preserve identity, keeping the rest of the networks
(F and Dt) fixed. We generate avatars using off-the-shelf
pretrained face encoders and compare these encoders with
ours. ArcFace [2] is trained on a much larger dataset (1M
images), and uses a ResNet100 [3] as a backbone. FaceNet
[12] uses an inception model as backbone and is trained on
8M identities. pSp’s encoder [11] uses a feature pyramid

network [7] to get the representations of the input images,
and it is trained on FFHQ dataset [5]. All encoders generate
a latent vector w ∈ R512, except for pSp which projects to
W+. Here, we define w to be the average vector.

Figure 5 shows comparisons of different encoders. Over-
all, our encoder and pSp encoder output more successful
results in terms of identity preservation. ArcFace struggles
preserving the identity of the input more than the rest of the
encoders, and FaceNet (column (c)) preserves the overall
identity but fails to capture finer details in the mouth: in
the first and second rows, it wrongly leaves a gap between
the upper teeth and the bottom lip, and in the fourth row,
it wrongly omits this gap. When the network uses our en-
coder, the shape of the mouth is generally better than other
decoders. Altogether, our pipeline design allows for other
pretrained encoders to be plugged-in without significantly
degrading the identity preservation of the generated avatars.

Avatar part # parameters Method

Facial shape 56 Learned
Nose 33 Learned
Eyebrows 25 Learned
Eyes 83 Learned
Mouth 54 Learned
Ears 12 Learned
Highlights 80 Learned
Moustache 20 Learned
Beard 22 Learned
Hair 152 KNN Retrieval
Glasses 41 KNN Retrieval
Cap 46 KNN Retrieval
Body 5 Learned

Table 2. Avatar parameterization by facial components. Hair,
glasses and cap parameters are not learned by our main model.
Instead, they are retrieved by a separate pipeline which we refer to
as “hair pipeline” for brevity.

Unpaired training Paired training

Epochs 20 10
Batch size 24 48
Optimizer Adam Adam
Learning Rate 0.0002 0.0002
Scheduler None Plateau
Latent Space Dim. 512 512
Optimizing Nets Et, Dt, Es, Ds F

Table 3. Training Hyper-parameters

6.2. Effect of Amount of Data

We are interested in testing the amount of paired data
that is needed so that our model does not break. Figure 6
shows examples of our model trained on different amounts
of data. Specifically, we train our model on 9970 image-
avatar parameters pairs (column (b)), 3995 (column (c)),
2000 (column (d)), 1000 (column (e)), and 500 (column
(f)). As noted in the main paper, our model starts breaking
identity preservation when trained on 2000 paired samples
or fewer, as shown in columns d, e, and f. When trained
on 1000 samples or fewer, the model produces exaggerated
facial features, such as a bigger and narrower mouth (third
and last rows), larger head size (first, second, and fourth
rows), and nose misplacement (second, third, and last row).
When trained on nearly 4000 samples (column (c)), our
model maintains the input’s identity overall. However, it
sometimes misses more nuanced features, making errors in
scale and placement. When trained on nearly 10000 paired
samples, our model captures much better identity features.
There is a visual relation of amount of data and avatar qual-
ity, and our method needs at least 2000 paired data sam-

(a) Input (b) Ours (c) FaceNet (d) ArcFace (e) pSp

Figure 5. Avatars generated by our method using different pre-
trained encoders.

(a) Input (b) Ours~10k (c) Ours~4k (d) Ours2k (e) Ours1k (f) Ours500

Figure 6. Effect of amount of paired data. (b) Our model trained
on 9970 pairs. (c) Our model trained on 3995 pairs. (d) Our model
trained on 2000 pairs. (e) Our model trained on 1000 pairs. (f) Our
model trained on 500 pairs

ples in order to preserve identity and generate high quality
avatars.

(a) Input (b) w/o alignment (c) w/o Lcm (d) w/o Lw (e) w/o Lmse (f) w/o Lcossim (g) with all

Figure 7. Model variations without proposed losses. (b) only uses reconstruction loss Lrec between generated and ground truth parameters.
(c) only uses weight alignment loss Lw. (d) uses reconstruction Lrec and cross modal loss Lcm but does not use weight alignment loss Lw

(e) uses all except for the MSE loss term in Lcm. (f) uses all except for the cosine similarity term in Lcm (g) uses all losses

6.3. Loss Ablations

We provide more visual comparisons between our model
using different losses in Figure 7. This ablation study tests
our mapping function F under different objectives. For an
easier evaluation, we re-state our objective functions here.
Our full objective is composed by a (1) reconstruction loss
Lrec = (ŷ− ȳ)2, where ŷ is the predicted parameters output
by a forward pass through image encoder, mapping network
and parameter decoder Dt(F (Es(I))) given an image I ,
and ȳ is the vector of parameters that is paired to I; and by a

(2) alignment loss. Our alignment loss is composed by three
terms: Lmse, Lcossim, and a weight regularization term Lw.
The first two measure a predicted latent code given by a for-
ward pass through the image encoder and mapping network
zf = F (Es(I)) and the output of a pretrained parameter en-
coder Et that we refer as the “expert” network, zt = Et(ȳ).
Our weight regularization term imposes a regularization on
the last layer of F ’s weights, built on the assumption that
F ’s last layer should be as similar as Et’s last layer weights,
since the former wants to project a vector into the same la-

tent space as the latter, and both networks are designed to
be a 2-layer MLP.

All columns in Figure 7 keep the reconstruction loss
Lrec. Column (b) removes the alignment module entirely
and only keeps the reconstruction loss. The rest of the
columns (c,d,e,f, and g) keep different terms from the align-
ment module. Specifically, column (c) only maintains the
weight regularization term Lw. Column (d) does the oppo-
site and only keeps this term (besides reconstruction loss).
Columns (e) and (f) remove Lmse, and Lcossim from our
alignment module, respectively. Last column (g) keeps all
the losses.

Without our alignment module (column (b)), the model
does not capture well the identity of the input person. From
here, the rest of the columns do a relatively good job at pre-
serving identity. However, by just using our weight regular-
ization (column (c)), the model fails to capture some facial
components that contribute to the entire identity. For in-
stance, in the third row, the eyes and the nose are closer
together than the input image. In the fourth row, the model
is generating somehow features of an older face. In the fifth
row, the generated eyes do not register the smiling and con-
sequently more stretched eyes from the input image. In the
bottom row, the eyes are not as big as the person in the input
image.

Without our weight regularization term (column (d)), the
model does a better job at fixing the problems explained
in the previous paragraph, but still generates facial features
that are a bit off from the input image. For example, in
the bottom row, the nose shape is different from the input
image. In the fifth row, the cheeks’ wrinkles are not as pro-
nounced as in the input image. In the fourth row, the eyes
of the little girl are not accurate, and a similar inaccuracy
happens in the first row.

Without the MSE term in our alignment loss (column
(e)), the model fails to register the eye shape accurately in
the last two rows, as well as the second row. In the first row,
the face shape or outline is rounder than the input image.
In the second row, the nose is not as accurate as the one
generated using all loses (column (g)). However, it seems
like this loss term might be the less important.

Without the cosine similarity loss term (column (f)), the
model generates less accurate avatars than column (e) and
(g). In the first row, the eyes are bigger and have a different
color than the input image. In the third row, the face shape
is longer and less round than the input image. In the fourth
row the eyes do not look similar to the input image, and the
mouth does not register the open gesture (see how columns
(e) and (g) do present a gap between the upper teeth and
the bottom lip). The identity of the last two rows is not
successfully preserved.

By using all proposed losses our model consistently pre-
serve identity better across age, gender and ethnicity.

Method Gen. Inv. Hair Total

U-GAT-IT [6] 0.0108 0.0108
GAN-Adapt. [10] 0.013 60.975 60.988
StarGAN-v2 [1] 1.222 1.222
MSGAN-pix2pix [9] 0.0102 0.0102
StyleCariGAN [4] 0.081 77.946 78.027
Ours 1.229* 2.747 3.976

Table 4. Inference Runtime computed in seconds. GAN-Inversion
is needed in StyleGAN2-based methods, where the latent vector
corresponding to the input image needs to be found. Inversion is
computed over 1000 iterations. *Our forward includes the forward
pass through the inference module and the time that of the vector
graphics engine to render the avatar in image space.

7. Comparison with Previous Methods
Figure 8 shows more examples of comparisons with pre-

vious methods. We include MSGAN-Pix2pix [9] in this
figure. We use official implementations of each method
and train with the default hyperparameters. Overall, we see
our method generates better quality and better identity pre-
served avatars. The GAN-Adaptation method [10] (column
(b)) works better for males than females. Hair color is gen-
erally not well preserved (all rows except for the last two),
and it wrongly adds eyeglasses on some inputs (first three
rows and sixth). It generally preserves well cheek wrin-
kles. StyleCariGAN [4] (column (d)) generates diverse and
good quality avatars, but sometimes it struggles preserving
the identity of the input. In the top row the avatar does
not register the elongated facial shape of the input. In the
second row, the avatar face is not as round as in the pho-
tograph. In the fourth row the model is generating eye-
glasses, and in the fifth and sixth row, identity is almost
completely missing. U-GAT-IT [6] (column (e)) produces
smooth colors and generally preserves identity better than
other previous methods. However, the generated avatars
present some deformations that degrade the quality of the
avatar. It struggles with long hair, but in general it preserves
well key facial features such as eyebrows, eyes, nose or face
shape. StarGANv2 [1] (column (f)) produces higher qual-
ity avatars than other previous methods, but identity is not
as well preserved. The last three rows have similar faces.
The first row does not preserve the elongated face from the
input. MSGAN-Pix2pix [9] (column (g)) generates diverse
avatars and generally registers well different hairstyles and
preserves relatively well facial shape (except for the exam-
ple in the third row). The quality of the image generated
by this method is compromised by the artifacts the model
generates.

7.1. Inference Runtime

Table 4 shows the inference runtime of our method in
comparison to previous methods. Methods free of GAN-

(a) Input (b) Ours (c) GAN-Adapt.(d) StyleCariGAN (e) U-GAT-IT (f) StarGANv2 (g) MSGAN-
 Pix2pix

Figure 8. Comparison of our model with state-of-the-art methods. All methods are trained on the same dataset, comprising 3995 image-
avatar pairs.

inversion or render engines such as U-GAT-IT [6] and
MSGAN-Pix2pix [9] are the fastest to generate avatars, as
these models only need a forward pass through their net-
works to directly generate the avatar in image space. GAN-
Inversion methods such as StyleCariGAN [4] and GAN-
Adaptation [10] are slower due to the optimization step

needed to compute the StyleGAN latent vector that corre-
sponds to the input image. These methods need around
one minute to generate an avatar. Our method generates
avatar images in around 4 seconds. This is due to the ren-
dering step that converts the generated vector of parameters
to an image (∼ 1.2s), and the hair and accessory retrieval

Figure 9. Example of question in our user study

pipeline (∼ 2.7s).

7.2. User Study

In order to ensure fairness in the user study, we pro-
vide detailed instructions that guide the selection process.
We explicitly ask participants to not consider image quality
when answering. That is, not to consider definition, resolu-
tion or crispness of the images. An example of a question
that evaluates identity is shown in Figure 9.

References
[1] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.

Stargan v2: Diverse image synthesis for multiple domains.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 8188–8197, 2020. 7

[2] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
4690–4699, 2019. 4

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[4] Wonjong Jang, Gwangjin Ju, Yucheol Jung, Jiaolong Yang,
Xin Tong, and Seungyong Lee. Stylecarigan: caricature gen-
eration via stylegan feature map modulation. ACM Transac-
tions on Graphics (TOG), 40(4):1–16, 2021. 7, 8

[5] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019. 2, 3, 4

[6] Junho Kim, Minjae Kim, Hyeonwoo Kang, and Kwanghee
Lee. U-gat-it: Unsupervised generative attentional networks
with adaptive layer-instance normalization for image-to-
image translation. arXiv preprint arXiv:1907.10830, 2019.
7, 8

[7] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 4

[8] Ingo Lütkebohle. Face Parsing. https://github.com/
zllrunning/face-parsing.PyTorch, 1028. 4

[9] Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and
Ming-Hsuan Yang. Mode seeking generative adversarial
networks for diverse image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1429–1437, 2019. 7, 8

[10] Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros,
Yong Jae Lee, Eli Shechtman, and Richard Zhang. Few-shot
image generation via cross-domain correspondence. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10743–10752, June
2021. 7, 8

[11] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: a stylegan encoder for image-to-image translation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 2287–2296, 2021. 4

[12] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015. 4

[13] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation
network for real-time semantic segmentation. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 325–341, 2018. 4

https://github.com/zllrunning/face-parsing.PyTorch
https://github.com/zllrunning/face-parsing.PyTorch

Figure 10. Samples generated using StyleGAN-2 generated faces.

Figure 11. Samples generated using StyleGAN-2 generated faces.

Figure 12. Samples generated using StyleGAN-2 generated faces.

Figure 13. Samples generated using StyleGAN-2 generated faces.

Figure 14. Samples generated using StyleGAN-2 generated faces.

Figure 15. Samples generated using StyleGAN-2 generated faces.

Figure 16. Samples generated using StyleGAN-2 generated faces.

