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Abstract

One of the most significant challenges to sign language
recognition (SLR) today is the low resource nature of sign
language datasets, with many datasets being extremely low
resource. Transfer learning is therefore a promising, and
likely indispensable, method of increasing recognition per-
formance. The use of pose estimation models, which are
typically trained on a large and diverse population, can
also aid generalization for extremely low resource sign lan-
guages. However, research on transfer learning for pose
estimation keypoints as inputs has been limited. In this
work, we explore transfer learning as a means to improve
SLR classification performance for the extremely low re-
source Irish Sign Language (ISL). We show that transfer
learning on larger datasets containing secondary sign lan-
guages significantly improves performance on our target
sign language, ISL. To understand these results and the at-
tributes that make one dataset better than another for pre-
training, we analyse the linguistic relationships between
these datasets. We find that certain attributes of datasets
are associated with better transfer learning performance.
We hope that our findings will not only motivate further re-
search into transfer learning for pose keypoint-based SLR
but also act as a practical guide to researchers on choosing
the most suitable datasets with which to pre-train models.

1. Introduction
Signed Languages (SL) are the main form of commu-

nication for the Deaf and Hard-of-Hearing community. It

is not a standalone international language but a collective

term for many languages using a visual-gestural modality

of communication. The World Federation of the Deaf re-

ports over 200 SLs used by approximately 70 million peo-

ple worldwide 1. Within this exists many regional and di-

alectical differences and, like spoken languages, the man-

ner in which these languages have travelled and developed

over time has also resulted in many traceable historical in-

fluences. For example, the “French Sign Language Family”

encompasses many modern European SLs such as Dutch,

Italian and Irish SLs as well as American Sign Language

(ASL) [20, 24]. These linguistic relationships introduce

an interesting lens through which to view transfer learning

strategies for Sign Language Recognition (SLR), particu-

larly in the context of extremely low resource languages

such as Irish Sign Language (ISL). More specifically, the

areas where the attributes of different SLs overlap, such as

hand-shapes, movements, or even entire signs, could pro-

vide an important bridge for knowledge transfer.

In this paper we will focus on one extremely low re-

source language in particular, ISL. ISL is the primary mode

of communication for approximately 5,500 individuals and

is estimated to have a total of just 60,000 users (hearing and

1https://wfdeaf.org/our-work/

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Deaf) [20]. At the time of writing, there are just two ISL

datasets curated for research purposes: The Signs of Ire-

land (SoI) [19] and the Irish Sign Language Hand-Shape

(ISL-HS) dataset [28]2. Notably, the latter is a very small

dataset comprising of images of the 26 ISL alphabet hand-

shapes. However, it is the only ISL dataset publicly avail-

able for download 3. SoI includes continuous sign language

data collected from Deaf ISL users across Ireland by fellow

Deaf community member Deirdre Byrne-Dunne. As a re-

sult, the data is uniquely “natural” in the lexical choice and

manner of the participants [19].

Despite the high quality of this dataset, it is still rela-

tively small, with a limited vocabulary, making it challeng-

ing to use for SLR. To the best of our knowledge, there are

no other signer independent 4 state-of-the-art SLR results

reported for this dataset. Consequently the first aim of this

paper is to address this gap in the literature by providing

a baseline for SLR performance on this dataset. Further-

more, given the limited data that is available, we hypoth-

esise that performance could be significantly improved by

transfer learning. Therefore, our second aim is to explore

transfer learning from other, larger SL datasets as a means

to improve SLR for ISL. We explored a number of differ-

ent datasets and found that some of the datasets we use for

knowledge transfer were more helpful than others. Conven-

tional wisdom would suggest that the largest dataset will

necessarily provide the largest boost in performance. Sur-

prisingly, we find that this is not the case, with more specific

linguistic features being more influential on performance.

We therefore explore the effect of the etymological close-

ness of SL datasets on their effectiveness for transfer learn-

ing. We hope that this analysis can act as a useful tool for

practitioners when attempting to identify the best dataset to

use for pre-training when fine-tuning on a extremely low-

resource dataset.

The remainder of the paper5 is structured as follows:

Current work in the field of SLR is described in Section 2,

specifically those using pose estimation based pipelines; We

describe our method of performing transfer learning and our

approach to the analysis of linguistic features in Section 3.

Section 4 describes the data, model and implementation de-

tails; In Section 5 we present the results of these experi-

ments; Finally, Section 6 concludes with a discussion of our

findings and suggestions for potential future work.

2There is also an ongoing initiative by Dublin City University to pro-

duce a glossary of STEM related terms for ISL which could not be included

at the time of this submission https://www.dcu.ie/islstem.
3https://github.com/marlondcu/ISL
4A data configuration whereby there are different individuals in each of

the training, validation and test sets.
5This work was supported, in part, by SignON, a project funded by

the European Union’s Horizon 2020 Research and Innovation programme

under grant No. 101017255; and by Science Foundation Ireland grant

13/RC/2094 P2 to Lero.

2. Related work
The lack of large-scale, diverse datasets is one of the ma-

jor challenges associated with SLR research [8, 1, 10, 15].

Coupled with the data-hungry nature of deep learning-based

machine learning techniques which comprise much of the

state-of-art, this scarcity presents a critical obstacle to the

development of translation systems capable of function-

ing in real-world signing scenarios. In fact, most SLs

are extremely low resource, with multiple studies exper-

imenting on datasets with as few as six individual sign-

ers [27, 9, 28, 29]. This can even be the case for popular

SLR datasets, such as the RWTH-PHOENIX-Weather cor-

pus which includes just seven individuals and a vocabulary

of just 911 signs [11] relative to the several thousands that

compose a SL. For models trained on these kinds of very

limited datasets, the risk of bias propagation is significant,

particularly in cases where raw images are used as input.

Holmes et al. [15] found that this can be somewhat mit-

igated by the use of pose estimation keypoints rather than

raw images. Pose estimation keypoints are a popular in-

put representation in many SLR works [26, 7, 16]. Aside

from an immense reduction in dimensionality when com-

pared to image-based representations, the scale and variety

of the training data used in the development of these pose

estimation models lead to a greater level of invariance to to

different visual conditions [26]. Furthermore, pose estima-

tion frameworks such as Google’s MediaPipe [22] publish

accompanying details of the individuals it has been trained

on [25], which suggests that these models have a greater

level of robustness to human variation than could ever be

achieved using a small SLR dataset with a very limited

number of participants. Given these advantages, and to en-

sure the best possible generalisation beyond the evaluation

sets of our the datasets we use, this paper will use models

trained on pose estimation keypoints for pre-training.

Some recent works have suggested that pre-training on

secondary more well-resourced SL data can improve per-

formance on smaller target sign language datasets. Sharma

et al. [30]. for instance, have made use of transfer learn-

ing from isolated to continuous Indian Sign Language data.

Notably, however, the authors used sensor data as input

which is a significantly more invasive data collection ap-

proach for participants than models using pose estimation

keypoints or images as input. Similarly Bird et al. [3]

use weights learned from British Sign Language (BSL) ges-

tures to improve classification performance on a smaller

ASL dataset. Here, the authors used a late fusion of im-

age and “bone” data (captured using Leap Motion) classi-

fication models. However, works pertaining to knowledge

transfer between SL datasets using pose estimation based

architectures [33, 6] are limited. Instead, it is common prac-

tice [26, 7, 21] for these models to be trained from scratch

resulting in an early plateau in performance [6].
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3. Transfer Learning for Pose-based SLR

Transfer learning has become a cornerstore of modern

computer vision models, so much so that pre-trained im-

age models are a standard offering in the most popular

deep learning frameworks such as PyTorch 6 and Tensor-

flow 7. Given the low-resource nature of SLR for ISL, trans-

fer learning will mostly likely be an essential component of

a well-performing SLR model for ISL. However, pretrain-

ing on pose estimation keypoints has not been explored as

extensively as transfer learning between models trained on

images. This means that the types of features that are typ-

ically transferred from one pose-based task to another, and

therefore the most useful characteristics of the pre-training

keypoint datasets, remains largely unexplored. This gap in

the literature makes it difficult to ascertain the most effec-

tive data to use for pre-training.

One approach to pre-training would be to train on vast

amounts of data, à la large scale computer vision and lan-

guage models, with the general consensus being that, the

larger the dataset, the more performance that can be gained.

This may well be true when the smaller target dataset con-

tains some components of the larger dataset such as similar

demographics of people, geographical location or overlap-

ping set of classes. The idea of a truly generalised dataset,

however, is largely a myth as no dataset, however large, can

be free of distributional bias of some description [5]. In

reality, the question that is typically more useful is “What

dataset will provide us with the most attributes that over-

lap with our target dataset?”. This is the question which we

seek to answer in our experiments, in particular with respect

to ISL. We do so by performing the following analysis:

Pre-training Dataset: To determine the dataset that is

most effective for transfer learning, we perform pre-

training on each dataset and evaluate the performance

of the resultant model when fine-tuned on the low re-

source target dataset.

Degree of Fine-tuning: In this step we seek to determine

the effect of fine-tuning all layers of the network versus

fine-tuning the final classifier layer alone.

Gloss Analysis: Though pre-training models and evaluat-

ing their effect on performance on the target dataset is

the most obvious approach to determine the most ef-

fective dataset, it would also be useful if we could es-

tablish the most appropriate dataset without the need to

pre-train several models. We therefore perform analy-

sis on the glosses 8 and discover the degree to which

6https://pytorch.org/
7https://www.tensorflow.org/
8Glosses are the labels assigned to each sign in written language. This

is the primary means of annotation for sign language datasets.

the vocabulary and lexical structure within them over-

laps between the datasets used for pre-training and the

ISL dataset used. The purpose of this analysis is to

establish whether we can choose the most appropriate

pre-training datasets a priori without having to train a

candidate model. This step also provides us with an

insight into the attributes of each dataset that make it

useful for pre-training in the target SL.

4. Experimental Setup
This section will first detail the datasets used in our ex-

periments along with the preprocessing performed. Next we

will detail the model used for pre-training and fine-tuning.

Finally we will provide implementation details for our gloss

analysis.

4.1. Data

We experiment with a number of larger-resource sign

language datasets in order to determine the most effective

dataset with which to pre-train. Specifically, we attempt to

transfer from two ASL datasets and one Flemish Sign Lan-

guage (Vlaamse Gebarentaal, VGT) dataset. In this section,

we briefly describe each dataset.

4.1.1 ISL

The Signs of Ireland dataset [19] is used to create the ISL

dataset for these experiments. Specifically, the “Personal

Story” and “Frog Story” activities are used. This dataset ex-

hibits a long-tailed class imbalance with the majority class

making up 9.5% of the total number of samples. Addi-

tionally, 24.1% of these samples are comprised of point-

ing/directional signs and basic gestures (i.e. those gloss la-

bels not pertaining to distinct lexical items).

4.1.2 VGT

Corpus VGT [32] is a continuous Flemish SL dataset cu-

rated for linguistic research and is used here to construct the

VGT dataset for these experiments. The resulting dataset

also exhibits a long-tailed distribution with the majority

class (a pointing sign) making up 10.4% of the total sam-

ples.

4.1.3 MS-ASL

The MS-ASL [17] dataset is an isolated sign language

dataset and is publicly available here [23]. It is a collec-

tion of educational videos scraped from the internet how-

ever, at the time of downloading, many of these had been re-

moved/made unavailable. Those that remained were down-

loaded and processed in the same manner as the above.

Though the class distribution is not entirely balanced, it is
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not to the same extent as the other datasets in this work. Af-

ter preprocessing, the majority class constitutes just 0.5% of

the total number of samples, with the fewest being 0.16%.

4.1.4 Google ASL

In our experiments we also use data taken from Google’s re-

cent Isolated Sign Language Recognition Kaggle competi-

tion [12]. Similar to MS-ASL, the class imbalance is not as

extreme with the majority class making up 0.4% of the total

samples. In terms of SLR, this dataset is extremely large.

We collected a total of 94,477 processed samples, making

it almost four times larger than the next largest dataset in-

cluded here. This dataset is unique in that it contains record-

ings of one-handed signing, because participants needed

to hold their smartphone (the recording device) with their

other hand. As all of the datasets that we use in this paper

feature two-handed signing, this may influence the transfer

learning performance.

Table 1. Dataset statistics after preprocessing.

Dataset # Samples # Classes # Participants

ISL 4,013 224 37

VGT 24,967 292 111

MS-ASL 12,259 402 173

Google ASL 94,477 250 21

In the case of ISL, VGT and ASL datasets, samples are

curated based on the available gloss annotations. Larger

videos are broken down into a collection of these word-

level clips ranging from 0.012 to 10.12 seconds in length.

Glosses relating to finger-spelled items are excluded. In

the case of Google’s Kaggle competition data, samples

were provided in the form of pre-extracted MediaPipe key-

points relating to sequences ranging from 2 to 537 frames

in length.

A stratified (on label) and grouped (on signer) split was

performed to ensure that: 1. the class distribution is similar

in the training, validation and test sets; 2. the data configu-

ration is signer independent. We also ensure that each sign

occurs at least once in the training and validation subsets.

The number of included samples, classes and participants

in each of these datasets is summarised in Table 1.

4.2. Data Preprocessing

Clips of ISL, VGT and MS-ASL datasets, were pro-

cessed using MediaPipe Holistic [13] to extract 67 key-

points associated with the hands and upper body of each

participant. In cases where hands could not be detected,

temporal imputation (linear interpolation) is performed to

naively infer these missing keypoints. Data normalisation

is also performed where we shift to the centre of the chest

and scale such that the distance between the shoulders is

one. A sequence of these processed keypoints form the in-

put to the model. The video data in Google’s ASL dataset

were already processed with MediaPipe Holistic: no video

data were available but only keypoints were provided. We

select the same 67 keypoints and process them in the same

way as the other datasets.

4.3. Model

The model architecture used here is comprised of five

stages. In the first of these, local temporal patterns are

learned for each input feature (i.e., every coordinate indi-

vidually) using residual depthwise 1D convolutions. We

stack four 1D convolutional layers with increasing kernel

size (3, 5, 7, 9) and add padding to maintain the sequence

length. Secondly, non-linear relationships between individ-

ual keypoint coordinates are learned from embeddings gen-

erated independently from each frame in the sequence. The

frame embedding consists of four blocks, each of them con-

taining a linear layer followed by layer normalisation [2]

and the GELU activation function [14] and regularised with

dropout [31]. The final block does not contain the GELU

activation, but a residual connection that adds the output of

the first stage (projected onto the same space). Next, local

temporal patterns within this embedding sequence are de-

tected with a limited receptive field using another stack of

residual depthwise 1D convolutions similar to the first stage,

except that every convolution block now consists of two

convolutional layers with GELU activations in between.

Following this, global temporal information is learned using

self-attention in which the receptive field covers the entire

sequence. Finally, the resulting vector is used as input to

the final classification layer. The architecture is illustrated

in Figure 1.

4.4. Training

Table 2 summarises the hyperparameters common to all

versions. In each case, the model was trained for a maxi-

mum of 50 epochs with fine-tuning. However, early stop-

ping is employed to monitor validation loss with a patience

of 20. The Adam optimizer [18] is used with an initial learn-

ing rate of 0.0003. The learning rate is reduced on a plateau

by a factor of 0.1, monitoring validation accuracy with a

patience of 5 epochs.

Table 2. Common hyperparameter values used in the experiments.

Hyperparameter Value

Batch size 64

No. attention layers 4

No. attention heads 8

Feature size 134

Embedding size 192
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Figure 1. Diagram of the SLR model architecture.

4.5. Gloss Analysis

In this step we seek to gain an understanding of the simi-

larities between datasets by analysing their glosses. Though

glosses by no means provide a full description of the sign

language being used, they can provide some insight into the

lexical content of the datasets in the absence of a complete

translation. We first perform some basic transformations to

standardise the format of glosses to make them comparable.

This process is somewhat complicated by the fact that dif-

ferent annotation conventions are used to convey gestures

and different variations of signs in each dataset. For Corpus

VGT, we remove any strings used to denote the particular

“version” of a given gloss by removing the last portion of

a gloss string separated by a ‘-‘ character, e.g. ‘HAVE-A’

to ‘HAVE’. We then translated the written Flemish glosses

to written English using Google Translate 9 and converted

the glosses from all datasets to lowercase. The following

comparisons are then performed:

Distribution of glosses: We first compare the distribution

of overlapping glosses to determine how similar the fre-

quency for these glosses are.

9https://translate.google.com/

Distribution of lemmas: Next, we lemmatise the glosses

to compare the distribution of lemmas. This step removes

the effects of inflected forms of the written words used as

glosses. Lemmatisation is performed using the NLTK [4]

WordNet Lemmatizer 10.

Distribution of Part-Of-Speech tags: Finally, we obtain

the Part-of-Speech (PoS) tags for each standardised gloss in

order to compare the grammatical composition of glosses.

PoS tagging is implemented using NLTK 11.

Overlapping terms vs. all terms For each of the afore-

mentioned comparisons, we compare the distributions of

glosses, lemmas and PoS tags that overlap between SoI and

each other dataset. In the final step, we perform this same

analysis on all glosses combined for each dataset paired

with SoI.

It is important to note here that the purpose of this analy-

sis is to give us a general indication of the “closest” dataset

to SoI and therefore this analysis is by no means exhaustive.

There are a number of limitations to this analysis as a result.

For instance, in some cases glosses were written as a com-

pound words, combining different terms in a way that would

10https://www.nltk.org/_modules/nltk/stem/
wordnet.html

11https://www.nltk.org/api/nltk.tag.pos_tag.html
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not typically be done in written English. Furthermore, since

different annotations conventions are used in each dataset,

gestures that cannot be directly mapped to an equivalent

form in written language are annotated in different ways.

In this work, we have not grouped different gesture annota-

tions and leave more complex analysis of gestures to future

work. Nevertheless, despite these limitations, we found that

the basic analysis outlined above mapped well to the results

achieved by models in the transfer learning experiments.

5. Results
A summary of the baseline F1-scores for each of the

datasets included in these experiments can be found in Ta-

ble 3. These scores are calculated using the model state

from the best performing epoch in terms of validation ac-

curacy. The weights from these Google ASL, MS-ASL and

VGT models are then used as the basis for transfer learning

to ISL.

Table 3. Baseline F1-scores for each dataset.

Dataset Training Validation Test

ISL 0.7604 0.243 0.2221

Google ASL 0.9052 0.6591 N/A a

MS-ASL 0.9983 0.6545 0.6305

VGT 0.7249 0.5007 0.482

a There are no results for the Google ASL test sub-

set as data was not released at the time of experi-

ments.

We will first look at the effect of the pre-training dataset

used on classification performance. Next, we will evaluate

the extent to which fine-tuning increases performance. Fi-

nally, we will detail the results of our analysis on the dataset

gloss annotations and provide a discussion on how the out-

comes can be leveraged by researchers in future.

5.1. Pre-training Dataset

A summary of the results of each transfer learning strat-

egy can be found in Table 4. In all cases, the performance

of ISL benefits significantly from pre-training.

Despite having far more samples than the other datasets,

pre-training on Google’s ASL dataset does not yield the

best results. We see two possible reasons for this: 1. there

is a domain mismatch between the isolated signing in this

dataset and the coarticulated signing in the SoI dataset; 2.

there is another domain mismatch between the one-handed

signing in this dataset and the two-handed signing in the

SoI dataset. In fact, MS-ASL has a fraction of the sam-

ples of Google’s ASL dataset, yet the SoI performance after

pre-training on MS-ASL is similar. By far the best perfor-

mance is achieved when pre-training on the Corpus VGT.

This is most likely because Corpus VGT also features coar-

ticulated signing. This insight is notable as it suggests that

pre-training on coarticulated signing is crucial to properly

leverage transfer learning for real-world signing.

Table 4. Summary of results (F1 scores) for ISL for each transfer

learning strategy with fine-tuning.

Transfer Training Validation Test

Google ASL 0.8789 0.2809 0.2508

MS-ASL 0.9638 0.2776 0.2483

VGT 0.9073 0.3311 0.2736

5.2. Effect of Fine-tuning

To evaluate the extent to which fine-tuning increases per-

formance, we also created a version of these experiments

where all but the final classification layer of the model is

frozen. A summary of these results can be seen in Ta-

ble 5. Interestingly, the significantly negative impact of

the Google ASL model in this case further highlights the

presumed domain mismatch. Meanwhile, the Corpus VGT

continues to be of significant benefit.

Table 5. Summary of results (F1 scores) for ISL for each transfer

learning strategy without fine-tuning.

Transfer Training Validation Test

Google ASL 0.4312 0.1527 0.1807

MS-ASL 0.5259 0.2085 0.228

VGT 0.6392 0.2687 0.2483

5.3. Gloss analysis

Here, we attempt to understand the attributes of a given

dataset that makes it more beneficial for pre-training than

others. We hope that this can not only give us an indication

of the most salient types of features for the SLR models but

also provide practitioners with concrete measurements that

can we used to guide their choice of pre-training dataset.

First, we look to the number of overlapping glosses and

lemmas between SoI and the other datasets in order to es-

tablish whether these are, in any way, associated with the

performance of models. In Table 6, we can see that the

number of overlapping terms does not seem to be the pri-

mary factor influencing the difference in performance be-

tween pre-training datasets. In fact, MS-ASL, which leads

to the worst performance of the three datasets in terms of

F1-score, has the most overlapping glosses and lemmas. It

is therefore useful to look more closely at the distribution of

these overlapping terms to determine whether this reveals

the same pattern of performance increase/decrease between

datasets.

Figures 2 and 3 show the distribution of overlapping

terms between SoI and MS-ASL/Corpus VGT, the worst
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Figure 2. Distribution of glosses that overlap between SoI (ISL) and MS-ASL

Figure 3. Distribution of glosses that overlap between SoI (ISL) and Corpus VGT.

Table 6. Number of overlapping glosses/lemmas/PoS tags between

datasets.

Overlapping
glosses

Overlapping
lemmas

Overlapping
PoS tags

ISL-MSASL 83 83 16

ISL-GoogleASL 55 55 11

ISL-CorpusVGT 66 68 16

Table 7. Cosine similarity between distributions of overlappling

gloss/lemma/PoS tag frequency for ISL and each other dataset.

Gloss Lemma PoS tag

ISL-MSASL 0.738 0.739 0.987

ISL-GoogleASL 0.754 0.754 0.994

ISL-CorpusVGT 0.767 0.766 0.995

and best performing pre-training datasets respectively. Ta-

ble 7 provides the cosine similarity between the gloss,

lemma and PoS tag frequency for overlapping terms in or-

der to quantify the similarity between these distributions.

We can see that the distribution between overlapping terms

in Corpus VGT is closest to SoI for glosses, lemmas and

PoS tags. In fact, the ranking of the models in terms of F1-

score matches the ranks of the similarity scores exactly for

each of these datasets. This suggests that the frequency dis-

tribution of the overlapping glosses, lemmas and PoS tags

may be indicative of the benefit a given dataset has for pre-

training before fine-tuning on a particular target dataset.

Analysing the overlapping glosses, however, ignores the

presence of non-overlapping glosses which will inevitably

Table 8. Cosine similarity between distributions of

gloss/lemma/PoS tag frequency for ISL and each other dataset.

Gloss Lemma PoS tag

ISL-MSASL 0.186 0.187 0.987

ISL-GoogleASL 0.126 0.126 0.990

ISL-CorpusVGT 0.075 0.076 0.994

affect the training of pre-trained models and, consequently,

affect the overall suitability of a dataset for use in pre-

training. In Table 8, we show the cosine similarity be-

tween SoI and the other three datasets in terms of the fre-

quency distribution of the union of their glosses, lemmas

and PoS tags. Clearly, here we can see that the number

of non-overlapping glosses has a large effect on the overall

similarity between frequency distributions of glosses and,

therefore, lemmas. This is due to the fact that there are a

large number of glosses that are not in common between

pairs of datasets. As a matter of fact we see that for glosses

and lemmas, when ranking the datasets in terms of this type

similarity to SoI, the ranks are inversely proportional to the

F1-score.

However, we have yet to discuss the role of PoS tags,

which we see consistently rank the datasets in terms of co-

sine similarity proportionally to their ranks in terms of F1-

score. Figures 4 and 5 show the distributions of PoS tags

for Corpus VGT and MS-ASL, the best and worst perform-

ing datasets respectively for pre-training. This indicates that

having a similar frequency of certain grammatical structures

is associated with better pre-training performance. When
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Figure 4. Distribution of PoS tags for all glosses in SoI (ISL) and Corpus VGT.

Figure 5. Distribution of PoS tags for all glosses in SoI (ISL) and MS-ASL.

we consider that Corpus VGT is composed of continuous

signing, like SoI, (rather than isolated signs which compose

MS-ASL and GoogleASL) the reasons for this variation in

grammatical structure becomes clearer. The presence of

some signs will clearly be more or less common in natu-

ral, continuous sign language than in a collection of isolated

signs. The degree of difference between the frequency dis-

tributions, however, is not extremely large suggesting that

it is a combination of factors that lead to increased perfor-

mance. For instance, this could be due to a similar distri-

bution of overlapping glosses, as discussed above, or some

other factors that are more difficult to analyse due to their

complexity. One such factor may be that there are more

variations of particular signs in continuous sign language

due to coarticulations or the presence of sign-language spe-

cific grammatical structures that are not discernible using a

standard PoS tagger, given that these tools are developed for

written languages, not sign languages.

In summary, our analysis shows that the similar-

ity between the frequency distribution of overlapping

glosses/lemmas and certain grammatical characteristics are

associated with the performance of a given dataset as a pre-

training dataset for SoI. We hope that this can guide practi-

tioners when seeking to determine the suitability of datasets

for use in pre-training and motivate the use of continuous

sign language datasets for pre-training.

6. Conclusions

The lack of large, varied datasets is a key challenge in

SLR, in particular for extremely low resources languages

such as ISL. Transfer learning has therefore become an es-

sential component of SLR systems. Though some work has

been done in the area of transfer learning for raw-image-

based SLR, there has been a distinct lack of evaluation of

the effectiveness of transfer learning for models that use

pose estimation derived from sign language videos. Pose

estimation models are indispensable to these pipelines due

to the fact that these models are trained on a more di-

verse population than would be available in any current SL

dataset. It is therefore crucial to evaluate the efficacy of

transfer learning using models that use pose estimation key-

points as input. In this work we have, to the best of our

knowledge, provided the first signer-independent SLR re-

sults for the SoI dataset. Secondly, we have shown that

pre-training on secondary sign language datasets provides

a significant boost in recognition performance for keypoint-

based model, in particular when end-to-end fine-tuning is

done on the target sign language. Finally we have compared

the characteristics of the gloss labels of these datasets to de-

termine whether the suitability of datasets for pre-training

can be established a priori. In doing so, we have revealed

an association between the suitability of a dataset for pre-

training and the similarity between their gloss and gram-

matical feature distributions to that of the target dataset. In

future we aim to expand our evaluation to an extended set of

datasets, additional architectures, and broaden our analysis

to glosses and grammatical features that are more specific

to SLs.
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