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Abstract

Human-robot collaborative object search entails joint ef-
forts between a human and a robot operating in the same
environment to locate a target object. Achieving efficient
collaboration requires to avoiding duplicated search ar-
eas and sharing the space appropriately. This paper in-
troduces a method for determining the robot’s search strat-
egy through the observation of human search behavior and
engaging in dialog with the human. The behavior is de-
termined by comparing estimated travel times for different
behaviors with the actual elapsed time. When faced with
multiple potential behaviors, the robot selectively generates
informative queries to resolve ambiguities and obtain valu-
able responses. This occasional dialog activation serves as
a crucial factor in achieving an efficient collaborative ob-
ject search. Through collaborative experiments with real
human subjects conducted in a virtual environment, we val-
idate the effectiveness of our proposed method in reducing
overlapped search areas and minimizing the time required
to locate target objects.

1. Introduction

Mobile service robots have recently gained popularity

for supporting people in various scenarios, such as delivery

and attending. In the context of lifestyle support, finding

and bringing a use-specified object is a common task for

mobile service robots. It has been used as a typical task in

many robotic competitions [14]. Another aspect of service

robots is human-robot interaction. A human and a robot can

collaborate physically or virtually to achieve a task. This

paper deals with the problem where a human and a robot

are in the same environment and collaborate to find a spe-

cific object.

One approach to collaboration is that the human takes the

lead by giving commands or suggestions to the robot. There

are systems with which humans can assist the robot’s recog-

nition or decision [12, 16, 13]. In this approach, a human

has to know the robot’s functionality to give appropriate

commands and suggestions. Another approach is robotic

support to human task execution [17, 6], where robots refer

to the model of the task or the human state and decide the

type and the timing of supportive actions. A robot and a hu-

man play an equivalent role in a collaborative object search

task.

Collaborative object search can also be considered a dis-

tributed search problem. In the case of robot-robot col-

laboration, robots can easily share respective data through

the network (e.g., [5]). In the collaborative search context,

for example, one robot knows where the other robots have

searched and are going to search and can choose its search

area. However, in the case of human-robot collaboration,

humans cannot give their knowledge digitally to the robot.

Therefore, the robot must obtain it in other ways, such as

observation and dialog, as in the case of human-human col-

laboration. In this paper, we take such an approach. The

robot estimates the human’s past search regions and predicts

future search regions from observation. Moreover, it asks

the human when further information is required for choos-

ing the best robot action.

When humans collaborate for object search, they do

not keep talking as usual conversation but usually conduct

search independently and have a dialog only when infor-

mation exchange is valuable. Therefore, we need to deal

with the problem of what to ask [4, 15] and when to ask

[20, 2]. This paper pursues these crucial problems in the

human-robot collaborative object search context.

The contributions of this paper are threefold. First, we

propose an approach to human-robot collaborative object

search based on behavior observation and ambiguity-based

dialog activation. Second, we developed methods to esti-

mate the human’s past search behavior and to predict future

behavior when exploring an unknown environment. Third,

we evaluate the proposed approach with real human sub-

jects in a virtual environment.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Diagram for robot’s execution.

2. Related Work
2.1. Assistive robots

Assistive robots help humans in various contexts. One

of the essential characteristics of such robots is the timeli-

ness of assistance. Hanai et al. [9] developed a humanoid

robot that can assist humans in pick-and-place tasks. The

robot predicts human action to generate a collision-free

robot hand motion timely. Hamabe et al. [8] developed a

framework of programming by demonstration for collabo-

rative assembly tasks. A learned model enables the robot to

assist a human operator in a timely fashion. In these works,

recognizing the intention of the human is crucial for effec-

tive collaboration. Xie et al. [23] proposed a method of

estimating the intention of human search action and using

the results for the robot to perform a complementary action.

It is shown that such an implicit interaction reduces the hu-

man workload. In the case of collaborative object search

tasks, as the robot often loses sight of the human, estimat-

ing the behavior while the human has not been observed is

more critical.

2.2. Human assistance to robots

Sprute et al. [21] proposed an object search method with

human assistance. A human operator monitors the robot

and the environment using multiple smart cameras and sug-

gests the target object location to the robot. Matsushita et

al. [13] proposed a similar approach but with an omnidirec-

tional camera interface on the robot. Burks et al. [1] pro-

posed a framework to utilize human assistance, considering

its uncertainty in planning an optimal robot action. These

works deal with object search problems, but humans do not

physically search in the same environment as the robot.

2.3. Dialog for human assistance

Knepper et al. [11] developed a framework for gener-

ating “targeted” requests in natural language, considering

common contexts between the robot and the human. Mo-

rohashi and Miura [15] developed a method of generating

queries for resolving the current ambiguity in the human’s

command. Deits et al. [4] developed a system that can in-

teractively resolve ambiguities in user’s commands, consid-

ering probabilistic relationships between symbols and rec-

ognized objects.

Cai and Mostofi [3] proposed a framework for optimiz-

ing a human-robot collaborative site surveillance problem,

considering the robot’s and the human’s expected perfor-

mance and the cost of observation and interaction. Serras et

al. [19] developed a dialog system that uses the current in-

formation’s entropy to decide if more information is needed.

These works deal with “ask or not to ask” problems and can

be used for human-robot collaboration with occasional dia-

log.

3. Outline of the Proposed Approach

3.1. Problem setting

We use the following problem settings. A robot and a

human jointly search for target objects in the same environ-

ment. The environment is initially unknown, and the robot

needs to map the environment using some SLAM method.

All objects are put on tables. The number of the target ob-

jects is given, but their locations are unknown. The robot

can detect and locate the human when he/she is visible. The

search finishes when the human-robot team finds all target

objects. Fig. 7 shows a scene of collaborative object search.
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Figure 2. Labeled map example. Pink: occupied, gray: free, black:

Unknown, blue: unsearched table, light green: table searched by

robot, light blue: table searched by human, yellow: table to be

searched by human. Dark green regions indicate margins for the

robot to avoid collision with tables.

3.2. Execution Flow

Fig. 1 shows the flow of the proposed method. The robot

manages the environmental information using a labeled 2D
grid map. The robot updates the map at each frame using

the latest sensor data. Then, the robot checks if the human

is visible or not. If the human is visible, the robot estimates

the regions where the human searched since the last time

the human was visible. The robot also predicts the regions

where the human will search for a fixed future duration. If

the human is not visible, the robot extends the previous pre-

diction by some fixed duration. To avoid a duplicated search

of the same region by the human and the robot, if there are

multiple possible estimated regions or predicted regions, the

robot asks the human about his/her past or future behavior

so that a unique estimation and prediction remain. Then,

the robot updates the map labels and plans the best motion

to search.

3.3. Mapping with table and object detection

The robot represents the environment using a 2D grid

map with labels. We use GMapping [7] for occupancy grid

mapping. In addition to three labels (free, occupied, un-

known) commonly used in 2D occupancy grid maps, we use

three more labels representing the table with three states:

unsearched, searched by the human, to be searched by hu-

man, and searched by the robot. Tables are detected by ex-

tracting point data at a certain height. We use Yolo v3 [18]

for object detection with a minimum distance requirement

(currently, 3 [m]). Fig. 2 shows an example labeled map.

4. Estimation and Prediction of Human Behav-
ior from Observation

An efficient collaborative search can be realized by ap-

propriately sharing search areas between the robot and the

human. To this end, the robot observes human behavior and

estimates where the human has searched (estimation of hu-

man searched area in the past) and will search (prediction

of the human search area in the future). The following sub-

sections explain how to carry them out.

4.1. Estimation of human searched area

In the collaborative search, the robot and the human usu-

ally examine different areas. Therefore, the human is not

always visible to the robot, and the robot intermittently sees

the human in various places. One valuable information for

the robot to determine its action is the areas where the hu-

man has searched during those unobserved periods. Our

strategy to estimate such areas is to find a sequence of hu-

man visits on tables whose elapsed time is close to the time

of an unobserved period. As objects are assumed to be on

tables, we set an observation point for each table and sup-

pose the human goes there to observe the tables. We first

consider the known environment case and then extend it to

unknown environments.

Known environment case First, we briefly describe a

method of searched area estimation for the known environ-

ment case, that is, the case where we have a complete map

of the environment with table positions. We search for se-

quences consisting of:

• the previous human position,

• observation points of the visited tables, and

• the current human position.

We do a breadth-first search with the previous human po-

sition as the root. The time of a route is the summation of

the time of movements between nodes and that for obser-

vation at each table (set to 10 [s]), and we collect a set of

routes whose estimated elapsed time is reasonably close to

the duration of the latest unobserved period. This condi-

tion is used for pruning useless branches during the search.

Once the most probable route is selected, the areas on the

tables are marked as searched within a certain distance from

the route.

The time for traversing between two locations is calcu-

lated using the Fast Marching Method (FMM) [22] on the

grid map. By applying the FMM to a grid map with a single

starting point (source point), we have a distance map, the

pixel value of which indicates the distance from the starting

point. The distance map is calculated for a table when the

robot finds it for later use.

Fig. 3 shows an example of trajectory and searched area

estimation. Fig. 3(a) shows a scene where the human is

considered to visit three tables. Fig. 3(c) illustrates that us-

ing three FMM distance maps from the three tables, we can

calculate the trajectory and the time of the whole sequence.

We then have a map of searched areas shown in Fig. 3(b).
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(a) Sequence of visited desks. (b) Searched area estimation (red:

searched region, blue: unsearched

region).

(c) Trajectory estimation with FMM.

Figure 3. Example of searched area estimation.

Unknown environment case We then describe the

method of estimating human-searched areas while explor-

ing an initially-unknown environment. In this case, we need

to consider unknown regions, as shown in Fig. 2. Therefore,

we add another node type at frontiers [25] and allow each

route to pass unknown regions.

A problem when a route includes an unknown region is

that we cannot know how much time the human needs to

traverse that region because no region size and table infor-

mation is available. To cope with this problem, we set a

minimum required time to traverse an unknown region (cur-

rently, 5 [s]) and allow any routes with unknown regions as

long as this condition is satisfied. The tentative time to tra-

verse an unknown region is calculated by subtracting the

time for traversing known regions from the duration of the

latest unobserved period. Also, once a previously-unknown

region is observed and becomes known, the sub-route in that

region is estimated as in the known environment case men-

tioned above.

Fig. 4 shows an illustrative example. On the left,

there are two frontiers and two tables, and several candi-

date routes with one or two frontiers are generated, and the

time for unknown regions is calculated. Suppose a route

with two frontiers is selected, and the unknown region is

observed later, as shown on the right. Then, the sub-route

inside the observed region is estimated with the calculated

time.

We also do a breadth-first search for candidate routes.

Let Ttarget be the duration of the latest unobserved period

and Tknown is the time for traversing the part of a candi-

date route in the known region. Each candidate must satisfy

either of the following:

• If a route is within only known regions (i.e., only ta-

ble nodes in addition to the start and the goal node),

|Tknown − Ttarget|/Ttarget < θdiff ;

• If a route includes frontier nodes, Ttarget − Tknown >
θmin,

where θdiff is an allowed time difference against the target

time, set to 0.2. θmin is the minimum required time in an

unknown region and is set to 5 [s].

4.2. Prediction of human search area

Predicting where the human will search is also crucial

for avoiding conflict in search areas between the human and

the robot. We thus predict possible human motions (i.e.,

sequences of table and frontier nodes to visit) until a fixed

future time point Tfuture for calculating the human’s future

search areas.

The only constraint we can use for prediction is the hu-

man position obtained by the latest observation. When there

are many tables and frontiers, considering all possible com-

binations may cause a combinatorial explosion. We, there-

fore, take a best-first strategy with multiple choices for the

first node to visit from the latest human position. We first

calculate the time of movement to the nearest node, Tmin.

We then select other nodes whose movement time is less

than Tmin + θmax. We use each node as a first node and

repeatedly choose the nearest unvisited nodes for route pre-

diction until the total time exceeds Tfuture. We currently

set Tfuture to 10 [s] and θmax to 3 [s]. Concerning frontier

nodes, we assume the time for traverse an unknown region

associated with a frontier is proportional to the size of the

frontier.

When the human is not observed, we update the predic-

tion with an extended time equivalent to the time elapsed

from the last prediction. The prediction procedure is the

same as above but uses the updated map information. If the

first node in the last prediction is a frontier and no longer

exists due to the map update, we use the nearest existing

node as the first node to predict a similar motion to the one

in the last prediction.

5. Robot Action Planning
5.1. To move or to ask

Choosing an action under a largely uncertain situation

may result in inefficient consequences. In the case of collab-

orative object search, when there are many possibilities of
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(a) Routes passing an unknown region. (b) Route estimation in the newly observed region.

Figure 4. Human behavior estimation in the presence of unknown regions. Figure 5. Dialog patterns.

regions where the human searched or will search, the robot

may search the same place as the human. The robot should

minimize the possibilities before deciding on the next action

for an efficient collaboration. Therefore, we allow the robot

to get more information from the dialog with the human.

In this paper, we take a simple, ambiguity-driven ap-

proach [15]; that is, if there are multiple possibilities for the

human’s past behavior or the human future behavior, the

robot generates a query such that it can get a useful piece

of information. If there is only one possibility for both the

past and future behavior, the robot takes a search action ex-

plained below.

5.2. Dialog planning and execution

Various dialog patterns are possible in actual collabora-

tion situations. As recognition of speech or text is out of

the scope of the current work, we prepare a set of Q&A pat-

terns shown in Fig. 5. Combined with a pointing gesture by

the robot or the human, the robot can acquire the necessary

information on the human’s past and future behavior.

Query generation We use the following simple rules for

query generation:

• If there are multiple past routes, sort the routes with

the closeness to the target time Ttarget, and let ΔTr1

and ΔTr2 be the time difference of the best route r1
and the second-best route r2.

– If ΔT2 −ΔT1 > θdiff , ask Q1:“Did you search

there (here)?” with pointing the route r1.

– Otherwise (i.e., there is no distinctive route), ask

Q2: “Where did you search?”

• If there are multiple future routes, ask Q3: “Where will

you search next?”

To start a dialog, the robot tells the human that it has ques-

tions and comes near to some distance (currently, within

4 [m]).

Processing human response We use the following pro-

cedure to process the human response to the question:

• If the question is Q1, the answer is A1:

– If the answer is “Yes”, the robot confirms that the

human took the route used in the question.

– If the answer is “No”, the robot excludes that

route from the candidate set.

• If the question is Q2, the human’s response is A2:

“Here (there)” with a pointing gesture. The robot cal-

culates the pointed location from the human position

and the pointing direction and chooses one route clos-

est to the pointed location.

• If the question is Q3, the human’s response and its pro-

cessing are the same as in the previous case.

5.3. Search action planning

The robot takes one of the following actions:

• Object search on the table when there is a table with

unsearched areas.

• Frontier-based exploration when all known tables are

searched.

For the first type of action, the robot takes the next best

view (NBV) approach. We place a set of viewpoints around

the table under consideration, and choose the best one

which maximizes the following score function: score =
Sc/(Tmot + Tobs), where Sc is the size of the currently-

unknown area on the table to be observed by a viewpoint,

Tmot is the time cost to reach the viewpoint from the cur-

rent location, and Tobs is the time cost for observation there.

This score evaluates the reduction of unknown areas per

time. For the second type of action, we choose the near-

est frontier as the current destination.

For an efficient sharing of search space, the robot needs

to consider not only its search history but the human’s past

and future search behavior. To this end, we record those

types of information on the labeled map; the robot excludes
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Figure 6. Example action planning scenarios. (left) search tables;

(right) move to a frontier.

Figure 7. SIGVerse simulation environment. (left) Environment

setup. (top-right) human avatar’s view. (bottom-right) robot’s

view.

the regions the human searched or will search from the can-

didate target of its own. Fig. 6 shows example scenarios of

robot action planning.

6. Experiments

6.1. Simulation environment

We implemented the experimental environment using

SIGVerse [10] environment. In SIGVerse, we can enter a

virtual environment as an avatar and interact with robots

and other avatars. We use a model of Toyota’s HSR (Hu-

man Support Robot) [24] as the simulated robot and control

it from the ROS environment. Fig. 7 shows the simulated

environment.

To enter the SIGVerse environment, we utilize a Meta

Quest 2 VR headset. Using the headset, we employ the fol-

lowing method to interpret human responses. First, we allo-

cate two different buttons for answering “yesr” and “no”

respectively. Additionally, we assign another button for

responses involving pointing gestures such as “here” or

“there.” This response is requested when the robot is faced

with multiple candidates of the human’s past or future be-

havior, and it needs to select one. Using the provided point-

Figure 8. Response with pointing gesture.

ing gesture, we calculate the direction of the pointing with

respect to the current avatar location, and choose the best

candidate whose direction aligns closest to the indicated

pointing direction. Fig. 8 shows a scene where the human

avatar responses with the pointing gesture.

6.2. Experimental procedure

We put three target objects in the environment. There are

three patterns of target object placement, and one of them is

randomly selected for each trial. We tell a subject to search

the environment for three target objects with the robot, and

the robot occasionally asks questions. We also teach the

subject how questions are presented and how to respond to

them using a controller device.

We compare the following three methods:

(1) The method that does not consider human behaviors

(baseline).

(2) The method that carries out both human behavior esti-

mation and prediction. In estimation, all of the possi-

ble routes are considered. In prediction, only the best

one is considered.

(3) The method that carries out human behavior estima-

tion and prediction and performs dialog when neces-

sary (proposed).

Eleven subjects (male: 9, female: 2) participated in the ex-

periments. Each subject tries each method twice, six times

in total. We compared duplicated search areas by the robot

and the human and total search times among the methods.

6.3. Results

Fig. 9 shows the comparison of the robot and the human

trajectories for the three methods. Fig. 10 shows example

trajectories in one of the experiments in each condition.

The results show that the estimation and the prediction of

the human behavior can significantly reduce the duplicated

search area and the search time. Without such estimation

and prediction, the robot and the human search the same

region, as shown in the top-left of Fig. 10.
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(a) Comparison in duplicated search. (b) Comparison of total search time.

Figure 9. Comparison of the three methods.

Figure 10. Example trajectories in each method. (top-left) no es-

timation/prediction nor dialog; (bottom-left) estimation/prediction

without dialog; (top-right) estimation/prediction and dialog.

Concerning the effectiveness of dialog, we cannot see

statistically significant differences. The dialog can slightly

reduce the duplicated search area but increases the total

search time. One possible reason is that in the current im-

plementation of the dialog function, the robot needs to come

near the human to start a dialog, which requires extra robot

movements. In the experiments, the robot moved for the

dialog for 15.6 [s] on average, which is large enough con-

sidering the robot’s speed and the size of the environment.

In human-human collaboration, they can talk from a dis-

tant place, but recognition of pointing gestures may be de-

graded. We need to elaborate dialog-based interaction to be

more realistic. Another possible reason is that the reduc-

tion of search region is not significant as expected. There

was a case where the human searched the region the robot

had previously searched. The current dialog is for the robot

to obtain missing information from the human; the human

cannot ask the robot but gets such information only from

observation. Extending the dialog to full two-way (i.e., the

human can also ask the robot) will improve the efficiency of

the collaborative search. Regarding the variance of results,

the method with dialog seems to have an advantage. This

result is probably because the method without dialog does

not wait until ambiguities are resolved, and the robot may

happen to take an inefficient search action.

7. Summary

This paper deals with collaborative object search as a

typical problem for human-robot interaction research. We

have implemented a method to estimate and predict human

past and future behavior. To cope with multiple estimation

and prediction situations, we introduce a dialog capability

by which the robot can obtain helpful information from a

human. We implemented an experimental system using a

virtual environment SIGVerse and conducted evaluation ex-

periments with human subjects. The results show that the

estimation and the prediction of human behavior signifi-

cantly improve the efficiency of the collaborative search.

Introducing the dialog capability seems effective in reduc-

ing the stability of the performance, but various extensions

will be necessary for further improving the efficiency.
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