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Abstract

Grounded Situation Recognition (GSR) is capable of rec-
ognizing and interpreting visual scenes in a contextually in-
tuitive way, yielding salient activities (verbs) and the in-
volved entities (roles) depicted in images. In this work,
we focus on the application of GSR in assisting people
with visual impairments (PVI). However, precise localiza-
tion information of detected objects is often required to nav-
igate their surroundings confidently and make informed de-
cisions. For the first time, we propose an Open Scene Un-
derstanding (OpenSU) system that aims to generate pixel-
wise dense segmentation masks of involved entities instead
of bounding boxes. Specifically, we build our OpenSU sys-
tem on top of GSR by additionally adopting an efficient
Segment Anything Model (SAM). Furthermore, to enhance
the feature extraction and interaction between the encoder-
decoder structure, we construct our OpenSU system us-
ing a solid pure transformer backbone to improve the per-
formance of GSR. In order to accelerate the convergence,
we replace all the activation functions within the GSR de-
coders with GELU, thereby reducing the training duration.
In quantitative analysis, our model achieves state-of-the-
art performance on the SWiG dataset. Moreover, through
field testing on dedicated assistive technology datasets and
application demonstrations, the proposed OpenSU system
can be used to enhance scene understanding and facilitate
the independent mobility of people with visual impairments.
Our code will be available at OpenSU.

1. Introduction
Scene understanding is a fundamental computer vision

technology that interprets visual scenes and is widely used

in various scenarios, such as autonomous driving [37],

robotics [74], assistive technology [71], etc. In this work,

we mainly explore scene understanding for helping People

with Visual Impairments (PVI). PVI often have difficulty

*Corresponding author (e-mail: jiaming.zhang@kit.edu).

Figure 1: OpenSU generates image caption and segmenta-

tion maps of salient objects, while GSR outputs overlapping

bounding boxes. The yellow point in the overlapping part

of the bounding boxes represents the region of interest.

interpreting their surroundings correctly due to the lack of

visual cues. Understanding a scene through tactile explo-

ration proves insufficient and potentially hazardous. Often

people need to recognize the whole scene at first glance,

then gaze at each object, sort out their relationships, and re-

act to the scene [25]. An assistive system providing scene

descriptions and object locations could be very useful for vi-

sually impaired people to get a better understanding of the

environment and thus lead towards more autonomy in many

daily situations. Existing assistance systems [71, 74] focus

on parsing the given image into pixel-level predictions with

class names. However, only knowing the class name of ob-

jects – without having any description between objects –

limits their ability to convey rich and comprehensive infor-

mation about the scene. Grounded Situation Recognition

(GSR) [48] is a verb-oriented task, which can predict the

complete information of the scene, e.g., activity and entity

information. Nevertheless, GSR models have limitations

in object localization through bounding boxes, which lack

fine-grained positional information and may result in am-

biguous interaction, such as overlapping bounding boxes.

Recently, the advent of foundation models such as Chat-

GPT, GPT-3 [5] and Segment Anything Model (SAM) [26]

has made significant contributions to the advancement of

Artificial General Intelligence (AGI). However, there is still

a lack of exploration regarding the application of these mod-

els in downstream tasks, particularly in the realm of assis-

tive technologies for PVI. The research question arises: how
are foundation models applicable to assistance systems for
helping people with visual impairments?

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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(a) Bounding boxes overlaping (b) Multiple objects in a BB

Figure 2: Challenging cases of using bounding boxes

(BBs) for object localization.

Based on the aforementioned viewpoints, we intro-

duce Open Scene Understanding (OpenSU) system (in

Fig. 1), which consists of Grounded Situation Recogni-

tion (GSR) [48] and Segment Anything (SAM) [26]. Our

OpenSU system can generate the scene description message

as GSR while additionally producing disjoint segmentation

masks of the objects to alleviate the confusion of object lo-

calization. Specifically, GSR outputs structured semantic

descriptions of images, including the main activity, enti-

ties of the predefined roles (e.g., agent, tool, place), and

the bounding-box groundings of entities. FrameNet [4] is

the lexical-semantic resource that maps every verb to a set

of semantic roles. Additionally, a preliminary frame is pro-

vided for each verb to facilitate the integration of roles, al-

lowing for the subsequent insertion of predicted nouns into

those roles. Besides, to achieve a wide range of open-set

scene description capabilities, SWiG [48] dataset with over

500 verb and 10K entity classes is applied to train the GSR

model. Compared to image captioning, GSR only considers

the significant words, while image captioning also consid-

ers the word order and nonessential words, like the articles.

Therefore, GSR yields more efficient descriptions and does

not face the evaluation challenges [2, 59] that image cap-

tioning encounters.

As mentioned before, ambiguous interaction occurs

when people attempt to localize the objects with bounding

boxes generated by GSR models, as shown in Fig. 2. The

positional relationship between objects can lead to overlap-

ping bounding boxes (in Fig. 2(a)), or a single bounding

box may encompass multiple similar objects (in Fig 2(b)).

These challenging cases may cause confusion about ob-

ject localization for PVI. Furthermore, the coarse bound-

ing boxes to the object outlines result in the inclusion of

background elements and an incomplete representation of

the objects. In the depicted situations, the system suffers

from confusion to extract the semantic information from the

bounding box annotated scenes. To eliminate the localiza-

tion limitation, SAM takes the bounding boxes as prompt

and produces the accurate segmentation masks of the in-

stances. Fig. 3 showcases the visual and linguistic out-

puts of SAM, GSR, and OpenSU. SAM generates precise

masks without semantic information or text messages. GSR

Figure 3: Comparison among scene understanding
methods, including Segment Anything Model (SAM) [26],

Grounded Situation Recognition (GSR) [13], and our

OpenSU. Our system provides the description: “A man
rides the motorcycle at a road”, and semantic masks for

more precise localization than overlapping bounding boxes.

predicts the activities, related objects, and bounding boxes.

OpenSU yields both an image description and segmentation

masks, enhancing the overall scene understanding.

In our approach, first, the description based on GSR and

the segmentation masks of salient objects is presented by

our OpenSU system. The user is then asked to specify a re-

gion of interest to get further information. To this end, we

propose various potential region indication methods. Sub-

sequently, the system returns the relevant semantic informa-

tion corresponding to the defined region, so as to assist the

user to localize the object of interest.

About the experiment, we validate the performance of

our GSR model on the SWiG dataset [48], demonstrating

a notable improvement of +3.47% over the previous state-

of-the-art GSRFormer model [12]. The vanilla SAM suf-

fers from large model sizes and latency. We explore dif-

ferent SAM variations [26, 70] in order to generate seg-

mentation maps efficiently. Compared to the counterpart

Grounded-SAM1, a stack of foundation models, our system

realizes real-time Open Scene Understanding, having 0.7s
vs. 74.04s processing time per image of the baseline.

To summarize, we present the following contributions:

• We design an Open Scene Understanding (OpenSU)
system, allowing people with visual impairments to

perceive the entirety of the scene and retrieve object

information in a specified direction.

• To achieve real-time OpenSU, we propose the state-

of-the-art GSR model which combines the Swin trans-

former and CoFormer architecture, and uses GELU to

shorten the convergence duration.

• We for the first time, adopt and test two variations of

the Segment Anything Model (SAM) in assistive tech-

nology for helping people with visual impairments.

• The effectiveness and efficiency of the OpenSU system

are verified by various experiments and field tests.

1https://github.com/IDEA-Research
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2. Related Work

2.1. Semantic Segmentation

Semantic segmentation aims to partition a given image

into several regions according to the semantic meaning,

which tends to classify each pixel into its corresponding

semantic class. Diverse research fields, e.g., autonomous

driving [11, 19, 47, 54, 66, 67, 75], medical image anal-

ysis [31, 50, 65], and assistance for visually impaired peo-

ple [18, 30, 36, 56, 71, 74, 77], rely heavily on semantic seg-

mentation to provide a deep understanding of the scenario

to achieve better assistance. Most of the existing seman-

tic segmentation works [36, 66, 71, 75] are close-set, where

the prediction space is limited by the class types provided

in the training set. With the rapid development of vision-

language model [17, 28], e.g., CLIP [24, 51] and BLIP [29],

and segmentation foundation models, e.g., SAM [26], open-

set semantic segmentation [33, 40, 46, 58, 68] has played

an increasingly important role in the computer vision com-

munity, which benefits from the ability to classify the pix-

els even for the class type which is not involved during the

training and thereby relies less on the expensive pixel-level

annotation on the new classes. Unlike existing systems, we

for the first time, introduce SAM-based scene understand-

ing for helping visually impaired people, which largely en-

hances the practicability of vision-based assistance in real-

world unconstrained everyday scenarios.

2.2. Scene Understanding

Scene understanding concentrates on comprehending

the existing elements and their corresponding relationships

within a given image, which results in the analysis of the

status of different objects, the attributes of the agents, and

their interactions. Scene understanding enables the deep

learning model to interpret the visual data, which bene-

fits diverse practical usages [3, 34, 41, 63, 76], e.g., assis-

tance for visually impaired [32, 36, 56, 71] and autonomous

driving [8, 44, 53], where Grounded Situation Recogni-

tion (GSR) [13] is one of the most essential scene under-

standing tasks, which predicts the entities, the activities

and the bounding boxes groundings for the corresponding

entities. SituFormer [61] makes use of a coarse-to-fine

verb model and a transformer-based Noun model to achieve

GSR. Cho et al. [13] propose a collaborative glance-gaze

transformer where the glance transformer is used to predict

the main activity and the gaze transformer is designed for

the estimation of entities. Cheng et al. [12] propose GSR-

Former to harvest structural-semantic description of a given

image. In this work, we for the first time propose a ground-

ing situation segmentation system to achieve dense segmen-

tation of the entities inside their bounding boxes. We lever-

age Swin as the feature extraction backbone and SAM as

the segmentation mask generator to achieve a superior scene

understanding. The convergence is accelerated by using the

GELU activation function in the whole framework.

2.3. Visual Assistance Systems

Visual assistance systems are used to provide essential

environmental information to achieve the navigation of the

visually impaired through wearable sensors [10, 27, 35]

and environment perceiving sensors [18, 36, 56, 71]. Se-

mantic segmentation is a well-established technique used

to assist the visually impaired. Lin et al. [35] propose a

learning-based wearable system to achieve the navigation

for visually impaired. Apart from semantic segmentation

techniques, V-Eye [18] makes use of a global localization

method to pursue a better scene understanding, while the

outdoor walking guide system [23] leverages depth infor-

mation. Liu et al. [36] propose HIDA to make use of in-

stance semantic segmentation techniques with LiDAR sen-

sor. The assistance for the visually impaired is likely to be

involved in different traffic situations. Tian et al. [56] and

Li et al. [32] concentrate on handling the crosswalk situa-

tion, which involves the segmentation of objects and pre-

diction of the traffic light status, while Zou et al. [77] fo-

cus on real-time passable area segmentation. Most of the

above-mentioned works rely on Convolutional Neural Net-

works (CNN) as feature extractors. Zhang et al. [71] pro-

pose Trans4Trans to leverage transformers to serve visual

assistance systems. Ma et al. [42] propose a robot system

to achieve wayfinding tasks for the visually impaired. The

work of “I am the follower, also the boss” [72] uses ma-

chine forms of a guiding robot and anatomy from differ-

ent stages to achieve visually impaired assistance. Zheng et
al. [74] focus on material recognition in wearable robotics.

Apart from the existing works with user studies, there are

still well-established works that only concentrate on seg-

mentation without user study [6, 52, 57, 74] to showcase

the feasibility of their concepts to assist visually impaired.

Our work falls into the latter case.

3. Method: Open Scene Understanding
As shown in Fig. 4, our Open Scene Understanding

(OpenSU) system consists of three parts: (1) the grounded

situation recognition; (2) the segmentation map generation;

(3) the information transformation. A rough image caption,

including main activities and objects, and bounding boxes

of the objects are produced by the grounded situation recog-

nition model. Since the objects interact with each other, the

overlapping bounding boxes can not classify the object in

the region of interest properly. To address this, the Seg-

ment Anything Model (SAM) is adopted behind the GSR

model to obtain the non-overlapping segmentation masks

annotated with roles related to the activities and the object

class. Finally, we propose several region indication meth-

ods to easily specify an object of interest by PVI.
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Figure 4: The overview of Open Scene Understanding (OpenSU) system. Grounded situation recognition captures the

activity (e.g., sitting), nouns (e.g., woman, chair, office) related to the roles (Agent, Item, Place), and the bounding boxes

of the objects. The caption template is “An Agent sits on an Item at a Place”, so the image caption of the verb sitting is “A

woman sits on a chair at an office”. SAM uses bounding boxes as prompts to generate the segmentation masks. According to

application interaction, potential region indication methods (e.g., fingertip, head pose, laser pointer) can be used to specify a

region of interest, and the information can be reported to the user via bone-conducting earphones of wearable systems [71].

3.1. Grounded Situation Recognition

Preliminary of CoFormer. Our GSR Model is based on

CoFormer [13], which is inspired by Kahneman’s cognitive

theory [25]. The theory suggests that humans employ two

comprehensive thinking systems to make decisions. In the

case of the scene understanding task, humans rapidly glance

at a scene to perceive the overall situation, then concentrate

on specific details to analyze the objects involved and their

relations. CoFormer builds upon the DETR [7] model, a

significant milestone in end-to-end object detection, to si-

multaneously predict the activity, salient objects, and their

corresponding bounding boxes. The image feature map ex-

tracted from CNN [21] backbone is processed with three

transformer decoders. The first decoder, the Glance Trans-

former extracts holistic information and predicts the activity

(verb) depicted in the scene. Based on the predicted verb,

the set of roles is determined. The second decoder, Gaze-

S1 captures the nouns and their relations using learnable

role tokens as input. The third decoder, Gaze-S2 takes the

aggregated image features and learnable tokens, predicted

verb, and its associated roles as input. It extracts role fea-

tures that are crucial for predicting grounded nouns.

Swin Transformer for GSR. CoFormer performed state-

of-the-art on the grounded scene understanding dataset,

SWiG [48]. However, since the multi-stream transformer

decoder makes predictions only based on the output fea-

ture map from the backbone, we argue that the capability of

the backbone in extracting high-level image features greatly

impacts the overall performance of CoFormer. According to

Dosovitskiy et al. [16], CNNs exhibit inferior performance

in modeling global context due to the restricted receptive

fields of the convolution operation, while vision transform-

ers extract both global and local information through the

self-attention mechanism, delivering the ability to capture

long-range dependencies effectively. To include the long-

range modeling capacity for GSR, we utilize the lightweight

version of Swin Transformer [39] pre-trained on ImageNet-

1k [15] to replace the CNN backbone. This design is non-

trivial, since Swin Transformer shows superiority to ex-

tract the local representation through local window attention

and the interaction among regions through shifted window

attention. Performing self-attention computations within

multiple windows is significantly more computationally ef-

ficient compared to applying global self-attention. Current

GSR models [13] apply multiple decoders to extract both

global (activity) and local (entities) information from the

feature map obtained by the CNN backbone. In contrast,

Swin Transformer which produces feature maps contain-

ing both global and local information is better suited for the

GSR task than CNN. More results are presented in Sec. 4.3.

GELU for GSR. Additionally, we accelerate the conver-

gence by replacing the ReLU [45] activation function with

GELU [22], a non-linear approximation of ReLU with the
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adaptive dropout feature, in the decoder transformers and

the classifiers. Since ReLU can guarantee the gradient on

the activation function to be constant 1 or 0 during back-

propagation, it solves the gradient vanishing issue and re-

duces the huge amount of operations caused by updating the

gradient with tiny values in practical engineering problems.

It simplifies the complexity of computation and brings the

effect of sparse activation, which is competitive in deep neu-

ral networks. ReLU [45] is formulated as:

ReLU(x) = max (0,x) . (1)

However, as a result of sparsity in ReLU, several neurons

with ReLU activation function are in a DEAD state and the

parameters cannot be updated. Instead, this leads to a de-

crease in the representation capability, resulting in a certain

loss of performance as well as training speed. Moreover, the

ReLU outputs remain unbounded on the positive side, lead-

ing to potential issues like gradient explosion during train-

ing. In contrast, GELU looks at the non-linearity problem

from a probabilistic view and delivers a continuous differen-

tiable output. It incorporates the benefits of both stochastic

regularization and ReLU. On the basis of one-sided satu-

ration, it maintains a certain negative correction capability

by retaining certain values in the partially negative region.

GELU circumvents the issue of dead ReLU to a certain ex-

tent but retains the sparsity caused by dead ReLU. Addi-

tionally, the nonlinearity of GELU in the positive region

enhances the fitting of complex nonlinear functions com-

pared to ReLU, allowing the GSR model to capture more

complex and nuanced relationships in the data. This leads

to an advanced understanding of the grounded situation. To

realize GELU, the input x is multiplied with the standard

Gaussian cumulative distribution function Φ (x):

GELU(x) = xP (X ≤ x) = xΦ (x)

= x · 1
2

[
1 + erf

(
x/

√
2
)]

.
(2)

GELU activation function is widely used in vision trans-

formers [16, 39, 60], but its performance is barely dis-

cussed. In our experiments (Sec. 4.4), we showcase the

effectiveness of GELU in our pure transformer architecture

for grounded situation recognition and scene understanding.

3.2. Segmentation Map Generation

To gain the accurate boundaries of the salient objects, we

leverage the original image as input and the bounding boxes

outputted by the GSR as prompts for Segment Anything

Models (SAMs). SAM serves as a promptable foundation

model for image segmentation, combining the benefits of

both semantic and instance segmentation. It provides the

capability to generate hundreds of masks per image with-

out prompt or generate specific masks using sparse prompts

such as points, boxes, or text, as well as dense prompts like

masks. Typically, SAM utilizes bounding boxes as prompts

for achieving instance segmentation, as masks generated by

SAM with point prompts might represent minute compo-

nents of an instance.

The solid but heavyweight image encoder ViT-H [16]

with 611M parameters empowers Segment Anything to

perform superior. Recent efforts [70, 73] dedicate to com-

press Segment Anything meanwhile remaining its robust-

ness. MobileSAM [70] shares the same architecture with

Segment Anything and employs TinyViT [62] with 5M pa-

rameters as an image encoder. The knowledge extracted

from SAM is transferred into MobileSAM via knowledge

distillation. MobileSAM improves not only the inference

efficiency but also the training efficiency. It is trained on

a single GPU with 1% of the original images for less than

one day. Because of the limited computation resources of

mobile assistance systems, it is crucial to perform efficient

inference to enhance the user experience. Therefore, in

this work, we spend a large effort to test and compare both

vanilla SAM and MobileSAM in our OpenSU framework.

3.3. Region of Interest Indication

Multiple sensors, like an RGB-D camera and Iner-

tial Measurement Units (IMUs), are installed on smart

glasses [71]. They can be used to capture the indicator and

infer the specified direction of interest. Here, we introduce

several potential methods to indicate the region of interest.

Please note that integrating different interaction methods in

our system remains in our future work.

Firstly, we can capture the gesture through cameras and

use gesture recognition algorithms [1, 9] to determine where

the user is pointing. Gesture recognition is already involved

in some VR/AR development kits, like Hololens. Further-

more, the work of Miksik et al. [43] on laser pointer de-

tection coupled with optical see-through glasses (EPSON

MOVERIO BT-200) serves as an inspiration for our direc-

tion indication. The utilization of IMUs enables the outside-

in 6 DOF pose tracking and pose estimation in AR glasses,

as analyzed by Firintepe et al. [20]. The system output is

focused on identifying the central object within the scene.

4. Experiments
4.1. Dataset and Metrics

Dataset. The GSR dataset, SWiG [48] is extended from the

situation recognition dataset imSitu [69] by adding 278,336
bounding boxes. Each sample of imSitu is labeled with a

verb, which is associated with up to 6 roles. Three work-

ers annotate the entities and their bounding boxes for the

images using Amazon’s Mechanical Turk framework. The

bounding boxes are described with format [x1, y1, x2, y2].
SWiG dataset contains 75K/25K/25K images for train-
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Table 1. Results (%) on the SWiG dataset, including three settings and five metrics evaluated on the val and the test set.

Models
Top-1-Verb Top-5-Verb Ground-Truth-Verb

verb value val-all grnd grnd-all verb value val-all grnd grnd-all value val-all grnd grnd-all

Methods for Grounded Situation Recognition (val set)

ISL [49] 38.83 30.47 18.23 22.47 7.64 65.74 50.29 28.59 36.90 11.66 72.77 37.49 52.92 15.00

JSL [49] 39.60 31.18 18.85 25.03 10.16 67.71 52.06 29.73 41.25 15.07 73.53 38.32 57.50 19.29

GSRTR [14] 41.06 32.52 19.63 26.04 10.44 69.46 53.69 30.66 42.61 15.98 74.27 39.24 58.33 20.19

SituFormer [61] 44.32 35.35 22.10 29.17 13.33 71.01 55.85 33.38 45.78 19.77 76.08 42.15 61.82 24.65

CoFormer [13] 44.41 35.87 22.47 29.37 12.94 72.98 57.58 34.09 46.70 19.06 76.17 42.11 61.15 23.09

GSRFormer [12] 46.64 37.69 23.58 31.61 14.42 73.43 58.75 35.82 48.42 21.67 78.76 44.71 63.95 25.85

OpenSU 49.96 41.12 26.69 34.69 16.27 77.77 62.81 39.23 52.56 23.50 78.68 46.66 65.33 27.66
Methods for Grounded Situation Recognition (test set)

ISL [49] 39.36 30.09 18.62 22.73 7.72 65.51 50.16 28.47 36.60 11.56 72.42 37.10 52.19 14.58

JSL [49] 39.94 31.44 18.87 24.86 9.66 67.60 51.88 29.39 40.60 14.72 73.21 37.82 56.57 18.45

GSRTR [14] 40.63 32.15 19.28 25.49 10.10 69.81 54.13 31.01 42.50 15.88 74.11 39.00 57.45 19.67

SituFormer [61] 44.20 35.24 21.86 29.22 13.41 71.21 55.75 33.27 46.00 20.10 75.85 42.13 61.89 24.89

CoFormer [13] 44.66 35.98 22.22 29.05 12.21 73.31 57.76 33.98 46.25 18.37 75.95 41.87 60.11 22.12

GSRFormer [12] 46.53 37.48 23.32 31.53 14.23 73.44 58.84 35.82 48.43 21.41 78.81 44.68 63.87 25.35

OpenSU 50.10 41.20 26.56 34.27 15.70 77.91 62.95 39.00 51.90 22.74 78.67 46.31 64.22 26.57

Table 2. Efficiency analysis of scene understanding meth-

ods and Segment Anything Model variants.

System Runtime(s) #Params(M)

Grounding DINO [38]+SAM+BLIP [28] 74.04 1310.66

OpenSU (SAM) 1.34 738.09

OpenSU (MobileSAM) 0.70 107.13

ing/validation/testing. The total numbers of verb, roles and

entities classes are 504, 190 and 11,538. The activity-role

pairs are derived from FrameNet [4] and the entity classes

source from ImageNet [15].

Metrics. Five metrics are reported to evaluate the GSR

models’ performance: (1) verb to measure verb prediction

accuracy, (2) value to assess the accuracy of a predicted

noun for a given role, (3) value-all to measure the correct-

ness of all nouns within a frame, (4) grounded-value to

determine if the noun is accurately predicted and its bound-

ing box has an IoU over 0.5, and (5) grounded-value-all
to measure the frequency that all the noun-bounding box
pairs are correct. Because of the structured annotation, all

metrics are highly related to the verb accuracy. And several

activities could take place in a scene. Three settings are pro-

posed to evaluate the predictions comprehensively. (1) Top-
1 Verb: once the top-1 predicted verb is not the ground truth

verb of the sample, all the verb, noun, and bounding boxes
are regarded as wrong. (2) Top-5 Verb: the verb is correct,

when the ground truth verb is contained in the verbs with

top-5 probabilities. (3) Ground-Truth Verb: the ground

truth verb is assumed to be given in this case.

4.2. Implementation Details

Our model is trained with a batch size of 4 for 40 epochs

on four Tesla V100-SXM2-32GB GPUs. Each input image

is padded to size 700 × 700. The transformer backbone

Swin-Tiny [39] is pre-trained on ImageNet-1k [15]. We

adopt AdamW optimizer with 10−4 weight decay, β1=0.9
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Figure 5: Training curves of the GSR model, Co-

Former [13], and our OpenSU systems, considering both

ReLU and GELU as the decoder activation functions.

and β2=0.999. The learning rates are different for back-

bone and transformer decoders, i.e., 10−5 and 10−4. Af-

ter epoch 30, the learning rates decrease with factor 10.

We use the same loss functions as CoFormer [13] to align

logits and targets, which are verb classification loss, noun

classification loss, box existence loss, and box regression

loss. To compare the inference time, 10 images with size

1042 × 1042 go through our OpenSUs and other frame-

works. The average runtime per image and the model pa-

rameters are calculated. The evaluation process is con-

ducted on one Tesla V100-SXM2-32GB GPU.

4.3. Results on SWiG

In this experiment, we focus on comparing the perfor-

mance of our proposed method with other state-of-the-art

methods. The quantitative results are illustrated in Tab. 1,

which indicates the proposed OpenSU outperforms other

counterparts among all evaluation metrics except for the

value metric in the Ground-Truth Verb setting. Compared

with the second best method [12], OpenSU achieves a

maximum 4.34% performance gain with the verb metric
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Figure 6: Qualitative comparison between GSR ground truth, predictions obtained from the GSR baseline CoFormer [13],

and fine-grained predictions of two SAM-based variants of our OpenSU system.

in Top-5-Verb setting on the validation set, and minimum

1.39% boost with the grounded-value metric in Ground-

Truth-Verb setting. Similar improvements can be found

on the SWiG test set with maximum 4.47% and minimum

0.36% referring to the verb metric in Top-5-Verb and the

grounded-value metric in the Ground-Truth-Verb setting,

respectively. As for the value metric in the Ground-Truth-

Verb setting, OpenSU achieves very close performance to

GSRFormer [12], the most competitive counterpart listed in

Tab. 1. It is worth noting that the performance gap between

the validation and test set is very small, which showcases

our OpenSU has an excellent generalization ability.

4.4. Efficiency Analysis

We further conduct experiments to analyze the effi-

ciency. Tab. 2 showcases the runtime in seconds and the

number of parameters of all systems. It can be easily found

that the MobileSAM-based OpenSU has the lowest num-

ber of parameters, which is less than one-tenth (−1203.53
MParams) compared with the combination of Grounding

DINO [38], SAM and BLIP [28]. Besides, OpenSU with

MobileSAM can achieve the smallest runtime, i.e., 0.70s,

reducing 73.34s compared to the combination baseline.

Furthermore, Fig. 5 presents the convergence speed of mod-

els using different activation functions. Our OpenSU with

GELU converges faster than OpenSU with RELU and Co-

Former [13] while keeping the highest verb accuracy un-

der the Top-1-Verb setting during training. This evidence

proves that the smoothness and continuity of GELU facili-

tate more stable and efficient optimization during training.

4.5. Qualitative Results

Qualitative results of CoFormer [13] and our OpenSUs

are presented in Fig. 6. For each image, there are three

frames that originate from three annotators, each of which

can be regarded as ground truth. In the first example, since

CoFormer wrongly predicts the activity, the related infor-

mation including roles, entity classes, and bounding boxes

is incorrect as well. Our OpenSU systems with the state-

of-the-art GSR model obtain the correct text and spatial in-

formation. Compared to OpenSU with MobileSAM, where

the upper body and the legs are delineated as separate en-

tities, OpenSU with original SAM can segment the details

of the overlapping objects. The second row showcases an-

other situation. All three models predict the correct verb

and nouns. However, the positions of the bounding boxes

predicted by CoFormer have a serious shift and the large

area of overlap leads to confusion. Both variations of the

proposed OpenSU output the corresponding segmentation

masks instead of the bounding boxes resulting in more pre-

cise prediction and better understanding.

4.6. Field Test

Apart from the evaluation on the SWiG dataset, the

OpenSU system underwent a field test on two visually im-

paired assistance datasets, i.e., Obstacle Dataset (OD) [55]

and Walk On The Road (WOTR) [64]. The field test en-

compassed comprehensive daily scenes, allowing for a thor-

ough evaluation of the system performance in assisting PVI.

Fig. 7 visualizes the results of OpenSU, including 1© con-
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struction site, 2© dining hall, 3© campus, 4© garage, 5© su-

permarket, 6© airport, 7© road, and 8© farm. Accurate seg-

mentation of entities can be achieved even when the sam-

ples ( 1© and 2©) contain five interactive roles. The detec-

tion of the woman and garbage in 2© and 5© is affected by

the objects with the same class and same color respectively,

leading to bounding boxes with incorrectly predicted sizes.

Overlapping bounding boxes do not degrade segmentation

performance, but inaccurate positioning and sizing can re-

duce accuracy. The absence of human agents presented

in the samples 4©, 6©, and 8© signifies that GSR differs

from Human-Object Interaction (HOI) and action recogni-

tion tasks. These tasks are generalized by introducing verbs,

such as “glowing”, “taxiing”, and “pawing”, to specifically

describe objects’ activities instead of people’s actions. We

observe that the descriptions of roadblocks are incorrect in
1© and 4©. As part of future work, we suggest involving ad-

ditional information about roadblocks in the dataset to im-

prove accuracy. Based on the field test, the image captions

provided in our analysis are considered rough, as they con-

sist of predefined frames for each verb with entities filled in.

However, despite their roughness, people can comprehend

them due to the structured image description.

4.7. Discussion

(1) What can AGI promote assistive technology? Arti-

ficial General Intelligence (AGI) has the potential to pro-

mote the development of assistive technology, including

scene perception and understanding, scene reasoning, adap-

tive learning for specific needs and preferences of users,

high-level decision-making in mobility and navigation, etc.

These capabilities can be leveraged to develop more intel-

ligent and adaptive assistive technologies, enabling them to

better respond to the special needs of users, particularly for

people with disabilities. However, the recent AGI technol-

ogy is resource-intensive. Thus, making AGI-based assis-

tance systems accessible and affordable to a wide range of

users, poses a significant challenge. Therefore, improving

efficiency is crucial to enhance the overall user experience.

(2) How to leverage big vision models to help PVI? By

leveraging the advantages of big vision models, i.e., Seg-

ment Anything Model (SAM), we enhance the object recog-

nition and positioning of GSR by delivering fine-grained

segmentation masks instead of ambiguous bounding boxes.

This approach enables more precise interaction experiences

when navigating and interacting with known or unknown

environments. The proposed OpenSU system is the first at-

tempt to combine SAM with GSR for helping PVI. Moving

forward, the integration of SAM in various assistive appli-

cations will be further explored to unlock its full potential,

such as customized object recognition, prompt-based object

finding, path finding, social distancing, etc.

Figure 7: Field test with the OpenSU system. The samples

are derived from datasets specifically proposed for assisting

the visually impaired, i.e., OD [55] and WOTR [64].

5. Conclusion
People with Visual Impairments (PVI) often encounter

challenges in understanding scenes in their daily lives. In

this work, we propose an open scene understanding sys-

tem (OpenSU) to assist PVI to obtain more comprehensive

scene descriptions. Specifically, we utilize the Swin trans-

former as the backbone, enabling more accurate Grounded

Situation Recognition (GSR). Besides, we for the first time,

adopt the Segment Anything Model (SAM) to generate

finer-grained masks for more precise object positioning

compared to traditional bounding boxes of GSR. Through

field testing, OpenSU showcases the effectiveness and the

advantage of using SAM and GSR to perform open scene

understanding in daily scenarios.
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