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Abstract

In order to realize effective and safe human-robot collab-
oration where many humans and robots complement each
other in close proximity, digital twin of the space would
play a crucial role to monitor the behaviors of many robots
and humans simultaneously and precisely in real time. Con-
structing such a digital twin requires estimating the precise
3D positions of instances in space, but Bluetooth sensors
lack accuracy, and LiDARs are costly when covering wide
areas. Therefore, we propose the use of multiple cameras
to capture overlapping videos of the space and reconstruct
the 3D positions of instances using geometrical methods.
We propose a multimodal approach that utilizes not only vi-
sion features, but also position features, to detect the same
objects in multiple cameras and use Conditional Random
Field (CRF) to infer the identicality of objects detected in
multiple cameras. The 3D positions of an instance taken
from multiple 2D cameras are then geographically esti-
mated. In the evaluation, we demonstrate the effects of CRF
and multimodal approach, and achieve comparative perfor-
mance with the state-of-the-art method.

1. Introduction
To address the social issues that will emerge in future

societies, there would be a growing need for human-robot

collaboration (HRC) [14], where humans and robots help

each other in smart factories, warehouses, shop backyards,

and so on. In such HRC, many humans and robots share a

same space and collaborate in close proximity so that hu-

mans and robots complement each other to be more effec-

tive; sometimes humans assist robots’ tasks, and sometimes

vice versa. In order to realize both effectiveness and safety

in such HRC, it would be crucial to monitor the behaviors

of many robots and humans simultaneously and precisely in

real time.

In recent years, there has been growing interest in a tech-

nology called “digital twin,” which involves creating a vir-

tual representation of the physical world. The purpose of

a digital twin is to enable real time perception of the phys-

ical world, including the positions of humans and robots,

using sensor devices and edge IoT systems. We believe that

digital twin would play a critical role to realize HRC envi-

sioned above. Behaviors of robots would be coordinated

using information from the digital twin. Humans would

be navigated to be more effective and safe to collaborate

with the robots using the digital twin. To achieve this goal,

lightweight and robust real-world perception, along with 3D

position estimation of multiple objects, is essential.

While machine learning has made significant advance-

ments in object recognition using images, achieving high

recognition rates, there are challenges when considering

broader digital twin applications. The power consumption

and computational resources required for these applications

are enormous. Additionally, addressing the decrease in

recognition rates caused by information obtained from sen-

sor devices is also an important challenge. The human brain

serves as an example of a lightweight and robust system that

effectively solves these problems.

Building upon these challenges, researchers have been

actively exploring mathematical models to mimic the infor-

mation processing mechanisms of the human brain. One

such framework that has gained prominence is the “genera-

tive model.” By employing probability distributions, gen-

erative models provide a means of accurately modeling

the source of data generation. In this context, Bayesian

estimation techniques are often employed, using multiple

modalities. This approach enables the development of a

lightweight and robust recognition system, facilitating the

generation of the probabilistic digital twin.

On the other hand, an essential task in constructing this

digital twin is estimating the 3D positions of objects in

space. Several studies have investigated localization meth-

ods using depth and RGB cameras, as demonstrated in

the works of [11, 20]. These methods have been shown

to achieve higher localization accuracy compared to tech-

niques that rely solely on radio wave positioning. However,

the cost of depth sensors is typically high, and their depth

accuracy range is limited. This presents a significant trade-
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off between cost and accuracy in practical applications.

Therefore, in this study, we propose a method to estimate

3D positions by leveraging multiple RGB cameras to detect

the same objects. One of the challenges in this work is ac-

curately identifying and matching the same object across

different camera views. Existing methods often focus on

the similarity between two recognized objects and overlook

the similarity between other objects in the scene. To address

this challenge, we introduce a graph structure that considers

the similarity between all recognized objects. This structure

allows for efficient propagation of similarity information

among different objects. However, traditional graph struc-

tures that consider the dependencies between nodes may not

lead to a convergent solution. To overcome this, we incor-

porate Markov Random Field (MRF) into the graph struc-

ture. The MRF represents the conditional independence be-

tween the probability variables associated with the nodes

and allows us to derive a Conditional Random Field (CRF).

The CRF enables us to estimate the best combinations that

represent the same objects. Based on the results obtained

and the 2D positions captured by the multiple cameras, we

perform a geographical estimation of the 3D positions. This

estimation takes into account the positional and angular in-

formation of each camera and considers the directions in

which recognized objects exist. This approach facilitates

lightweight and robust estimation of 3D positions.

The rest of this paper is organized as follows. In Section

2, we provide a comprehensive review of related work in the

field. Next, in Section 3, we introduce our novel approach

to estimating 3D positions by detecting the same objects

using the CRF framework. Following that, in Section 4, we

conduct an evaluation of our proposed method. This paper

concludes with Section 5.

2. Related Work
Vision-based Re-Identification (Re-Id) is a technique

used to detect and identify the same objects across images

captured by different cameras. It plays a critical role in ob-

ject detection [1, 3, 4, 5]. These methods take advantage of

deep learning to extract visual features, enabling high ac-

curacy when trained and tested under consistent conditions.

However, a drawback of these methods is that detection per-

formance decreases when there are changes in conditions or

background. In such cases, retraining becomes necessary to

adapt the model to the new condition.

In contrast, an alternative and more general approach for

detecting the same object using multiple cameras is to lever-

age the positions of recognized objects as features. Exist-

ing methods employ different strategies, such as projecting

object positions onto the ground based on camera instal-

lation angles and positions, and utilizing spatial relation-

ships to identify the same objects [13]. Another approach

involves estimating the positions of recognized individuals

using skeleton information, followed by object detection

[10]. However, a limitation of these methods is that they

assume that objects are in contact with a horizontal ground

plane. This assumption poses difficulties in handling sce-

narios that involve steps or slopes. Therefore, in this paper,

we propose a novel approach that not only utilizes visual

features of recognized objects, but also incorporates their

centroid positions as additional features.

Furthermore, distance learning methods have been

widely proposed in the field of Re-ID [17, 18]. These meth-

ods employ Siamese networks and metric learning tech-

niques to minimize the distance between the same objects

and maximize the distance between different objects, lead-

ing to more accurate detection of the same objects. How-

ever, a limitation of these methods is that they only consider

the similarity between pairs of objects and do not fully cap-

ture the similarity between other objects in the dataset.

Therefore, in this study, we propose the use of a graph-

ical model to detect the same objects. Recently, there has

been research focusing on Re-ID and object detection using

graphical models, particularly methods employing CRF [2].

CRF allows for the representation of object states and their

dependencies through nodes and edges, facilitating a more

accurate classification of the entire set of objects. CRF has

demonstrated its effectiveness in tasks such as sequence la-

beling and semantic segmentation, where considering con-

textual information is crucial. Similarly, in the context of

detecting the same objects, the use of CRF proves benefi-

cial, as it enables the incorporation of contextual cues for

more accurate and reliable results [9].

Taking into account the aforementioned points, our study

utilizes CRF for the detection of the same objects. We also

take into account multimodal similarities by incorporating

both vision and position features, thereby addressing the

challenges that arise when relying on one type of feature.

3. Proposed Method
In this study, we define the source X as the state of exist-

ing actual instances in the real world, and the data Y as the

vision and position feature vectors of the detected objects in

each camera. To capture the true probability distribution of

the real world, denoted Ptrue(X), we construct a generative

model Pmodel(X) using MRF. Within this MRF construc-

tion, we use CRF as a learning model P () to estimate the

inferred results of the source data X based on the observed

data Y . CRF is a method that seeks the optimal solution in a

graphical representation by updating the states of the nodes.

It is commonly used in tasks such as semantic segmentation

and sequence labeling.

In the following section, we provide a detailed descrip-

tion of our 3D pose estimation method, as shown in Fig.

1. Our method involves constructing a graph based on the

extracted features of objects captured by each camera. Sub-
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sequently, we employ CRF to detect the same object within

this graph. In CRF, unary and pairwise terms are calculated

from the feature vectors, and inference is performed using

belief propagation. Finally, we estimate the 3D positions

based on the results obtained from the detection of the same

objects.

3.1. Graph Definition

We present an overview of the graph in Fig. 2. In this

study, we refer to entities existing in the 3D space as the

“instance” denoted by I , and the objects recognized in the

camera images as the local “object” denoted by L. Our aim

is to model the state X of instances Ii and their 3D positions

IP . Therefore, we define X = {IP1 , IP2 , ..., IP|I|}.

These instances I give rise to the local observed ob-

jects Ll in each image captured by the respective cam-

era. We consider a graph G = (V, E), where the nodes

V represent the local observed objects and are denoted

as {L1, L2, ...L|L|}. Each node Ll contains the feature

values of the corresponding observed data, represented as

Y = {Yl|Ll ∈ V}. The edges E are established be-

tween different nodes captured by different cameras, rep-

resenting the connections between them. Additionally, we

take into account the matching between the recognized ob-

jects Ll and the instances Ii. We express the probability

distribution of these matches as hidden states denoted by

X ′ = {Li
l|Ll ∈ V, i ∈ I}.

3.2. Conditional Random Fields

In our proposed method, we utilize CRF to estimate the

hidden state X ′ and achieve the detection of the same ob-

jects based on the observed data Y . The conditional proba-

bility P (X ′|Y,X) in the CRF is expressed as:

P (X ′|Y,X) =
1

Z
exp (E(X ′|Y,X)) (1)

where Z =
∑

exp (E(X ′|Y,X)), and E denotes the Gibbs

energy function:

E(X ′|Y,X) =
∑
i

ϕU (Y
P
l , X)+

∑
Ll,Lk∈V

ϕP (Y
P
l , Y V

l , Y P
k , Y V

k , X)
(2)

where ϕUandϕP refer to the unary and pairwise terms,

respectively, and Y P and Y V represent the position and vi-

sion feature vectors. The multiobject detection problem is

transformed into an energy maximization problem, and the

results P (X ′) are then used to estimate the 3D positions

P (Xi). However, due to computational complexity, it is

not feasible to calculate all combinations. Instead, we find

the results of multi-object detection by maximizing the con-

ditional probability:

x′ = argmax
X′

P (X ′|Y,X) (3)

3.3. Belief Propagation

Belief propagation (BP) is a message passing algorithm

that is used for inference in graphical models. It enables

the exchange of information between neighboring nodes to

update their states.

In the graph G, we can derive the marginal distribution

considering the conditional probabilities between neighbor-

ing nodes based on the Markov property. Hidden states X ′

are updated using messages that contain information from

neighboring nodes. For example, the message mlk from

node Ll to Lk is expressed as:

mlk = P (X ′
l |Yl, Xi)ϕP (Y

P
l , Y V

l , Y P
k , Y V

k , X) (4)

The messages are then used to update the states of nodes

P (X ′
l |Yl, Xi), resulting in:

P (X ′
l |Yl, Xi)

∗ = P (X ′
l |Yl, Xi) +

∑
k∼l

mkl (5)

where ϕU (Y
P
l , X) represents the initial states of

P (X ′
l |Yl, Xi), and k ∼ l denotes that node Lk is adjacent to

node Ll. By repeatedly performing these updates, we effi-

ciently obtain the optimal posterior probability P (X ′|Y,X)
for each node.

3.4. Unary Term

The unary term in Eq. 2 derives the hidden state X ′

based on the observed position feature Y P and the posi-

tion of the instance IP . To obtain the candidates of Y P , we

perform hierarchical clustering and calculate the Euclidean

distance between these candidates. Each detected object is

then considered for similarity in the unary term.

First, we perform a coordinate transformation using

camera parameters to obtain the candidates for Y P . RGB

cameras typically undergo a calibration process to deter-

mine lens distortion, focal length, camera installation posi-

tion coordinates, and angles. With these parameters, points

on the image plane can be projected as lines in 3D space.

In this method, these lines represent the position feature

vectors Y P = (Y P
1 , Y P

2 , ...Y P
|L|). Fig. 3 provides a top-

down view that illustrates these position features, with the

red lines indicating Y P . Among these position features, the

lines captured by different cameras converge most closely

at the common perpendicular point. It is assumed that po-

sitions where such convergence occurs frequently are likely

to correspond to instances.

Consequently, we perform hierarchical clustering analy-

sis at the midpoint of this common perpendicular point to

detect the same object and estimate its 3D position. Hierar-

chical clustering is suitable for this method, as it does not re-
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Figure 1: Method overview

Figure 2: Graph definition

quire specifying the number of clusters beforehand. Instead,

a threshold is set as the acceptable distance for position es-

timation errors. The center coordinates of these clusters are

defined as the position features of the instance, denoted as

IPi (1 ≤ i ≤ |I|), and the Euclidean distance d between the

position feature Y P
l of the detected object Ll is considered.

In this approach, we use the probability density of d in a

Gaussian distribution with a mean of 0 and a variance of T .

This T represents the threshold used in hierarchical cluster-

ing. Thus, the probability distribution P (X ′|Y P
l , IP ) of the

detected object Ll in clustering can be expressed as:

P (X ′|Y P
l , IP ) = Gaussian(

√
(IP − Y P

l )2, 0, T ) (6)

where Gaussian() represents the first-order Gaus-

sian distribution, and the similarity of the unary term

ϕU (Y
P
l , X) is expressed as:

ϕU (Y
P
l , X) = P (X ′|Y P

l , IP ) (7)

Figure 3: Positional feature vector form cameras to objects

3.5. Pairwise Term

The result of position clustering alone may lead to the

convergence of straight lines, which are positional features,

at unintended coordinates. Moreover, considering only the

similarity between objects and detected entities does not

capture the similarity between the detected entities them-

selves. To address these issues, we incorporate probabilities

of vision similarity and positional similarity between de-

tected entities into pairwise terms. By using feature vectors

Y V extracted using an existing CNN model and calculating

the cosine similarity, as well as considering the positional

characteristics Y P and computing the Euclidean distance,

we define the pairwise term ϕP (Y
P
l , Y V

l , Y P
k , Y V

k , X) as

follows:

ϕP (Y
P
l , Y V

l , Y P
k , Y V

k , X) =

cos(Y V
l , Y V

k )dis(Y P
l , Y P

k )
(8)

dis(Y P
l , Y P

k ) = T − euclid(Y P
l , Y P

k ) (9)

where cos() represents the cosine similarity and euclid()
denotes the Euclidean distance.
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Figure 4: 3D position estimation from multi-view images

3.6. 3D Position Estimation

In the proposed method, the 3D position of each in-

stance Ii is estimated based on the results of the detec-

tion of the same objects P (x′), as depicted in Fig. 4. For

every pair of the same objects detected Ll and Lk from

different cameras, we consider the probability distribution

P (Xi), where each element represents the points at which

their position feature vectors Y P
l , Y P

k are most convergent.

The 3D position Ii is obtained as a weighted average of

the probability distribution P (Xi), and the “most conver-

gent” point is defined as the midpoint of the common per-

pendicular lines Y P
l andY P

k . We denote this midpoint by

midpoint(Y P
l , Y P

k ).

P (Xi|x′, Y ) = (midpoint(Y P
l , Y P

k )|l, k ∈ x′
i) (10)

Ii =
1

z

∑
l,k∈x′

i

midpoint(Y P
l , Y P

k )

(P (x′|Yl, X) + P (x′|Yk, X))

(11)

z =
∑

l,k∈x′
i

(P (x′|Yl, X) + P (x′|Yk, X)) (12)

4. Experiments

We evaluate the performance of the proposed method in

a multi-camera 3D position estimation scenario. For the

evaluation, we use both original data for conducting abla-

tion studies and an open dataset for comparison with an ex-

isting method [12]. The proposed method aims to detect the

same objects across multiple cameras by leveraging both

positional and vision features and utilizing a graph-based

approach.

4.1. Environment Setup

In this evaluation, we have implemented the proposed

method using Python. We perform object detection in each

camera using YOLO v5 [15, 8]. To extract the vision feature

vectors used in pairwise terms, we utilize OSNet [21]. For

the evaluation, we target video input, where we obtain ob-

ject detection results using YOLO and gather RGB and po-

sition information from each frame of the video. The RGB

information is transformed into a 512-dimensional image

feature vector using OSNet, while the position information

is converted into a position feature vector through coordi-

nate transformation using camera parameters. By obtaining

these input information for each frame, we acquire the nec-

essary data to construct the graph for further processing.

4.2. Dataset and Evaluation Metrics

The purpose of this study is to address the challenge of

estimating 3D positions using multiple cameras, which is

not a commonly explored approach. Consequently, there

is a scarcity of available datasets that provide accurate 3D

position coordinates, which are essential for evaluating such

methods. To conduct the ablation study, we created our own

dataset specifically for this purpose. In our original dataset,

we set up cameras at the corners of an indoor space measur-

ing approximately 6 by 7 meters, positioned at a height of

2.5 meters, as depicted in Fig. 7. We recorded video data at

a frame rate of 30 fps for approximately 1 minute. During

the video recording, 4 individuals engaged in random walks

for the first 30 seconds. Subsequently, 2 individuals exited

the scene, while the remaining two individuals continued

random walking for an additional 30 seconds.

For our original dataset, we manually annotated the

ground truth data, which includes object IDs and 3D po-

sitions. First, we fixed the correct 3D position data based

on the height of each individual for the vertical component.

Next, we visually confirmed the grid of 10 cm intervals su-

perimposed on the image of each frame. It is important to

note that due to the manual annotation process and the limi-

tations of visual estimation, the ground-truth data itself may

have an error of approximately 10 cm.

To compare our proposed method with an existing ap-

proach, we utilized the EPFL Multi-camera pedestrians

video Terrace dataset [6]. This dataset consists of video

footage captured by four cameras, featuring nine individu-

als walking in a random manner. The EPFL dataset provides

ground truth data for the positions of individuals, which are

expressed as correct positions in the ground plane. The

ground-truth positions are provided in a grid format with

a resolution of 25 cm by 25 cm.

Furthermore, in evaluating the performance of object de-

tection, we employ several evaluation metrics: Homogene-

ity (H), Completeness (C), V-Measure (V) [16], Adjusted

Rand Index (ARI) [7], and Adjusted Mutual Information

(AMI) [19]. Homogeneity measures the extent to which

each cluster contains only samples of the same class, while

Completeness evaluates whether all samples of a given class

are assigned to the same cluster. The V-measure is the har-

monic mean of H and C.

These three metrics assess the clustering results, but may

not be sufficient in cases of random labeling. Therefore,

we also utilize ARI and AMI, which focus on the similar-

ity of assignments or mutual information. ARI quantifies
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(a) Camera 0 (b) Camera 1 (c) Camera 2 (d) Camera 3

Figure 5: Terrace dataset

(a) Camera 0 (b) Camera 1 (c) Camera 2 (d) Camera 3

Figure 6: Original video data

Figure 7: The setting of experimental space

whether two elements are grouped in the same cluster, while

AMI incorporates mutual information to assess the cluster-

ing agreement.

Each of these metrics produces a score ranging from 0 to

1, with 1 indicating perfect clustering. However, for ease of

understanding, we present scores in the range of [0, 100].

In addition to these clustering metrics, we evaluate the

performance of our proposed method for 3D position esti-

mation by considering the distribution of errors in relation

to the ground-truth positions. This evaluation metric pro-

vides insight into the accuracy and precision of our method

for estimating 3D objects’ positions.

4.3. Parameter Setup

In this method, BP is used for detecting the same ob-

jects, and the frequency of graph updates must be speci-

fied as a parameter. To determine the appropriate number

of iterations for BP, we conducted an evaluation and fixed

the parameters accordingly. Fig. 8 illustrates the results of

the evaluation, showing the AMI, average 3D position er-

video data

Figure 8: Evaluation of the number of iterations

ror, and standard deviation of 3D position error for different

numbers of iterations in the range of 0 to 10. The results for

0 iterations represent the performance based solely on the

unary term. Based on these results, we observe a significant

improvement in all metrics with the introduction of BP. The

metrics stabilize after around two iterations. In our pro-

posed method, all nodes in the CRF are connected within

a 2-hop range. Therefore, with two iterations of BP, each

node incorporates the states of all other nodes, leading to

improved performance and accuracy in detecting the same

objects. In the following evaluation, we set the number of

iterations to two.

4.4. Evaluation of Same Object Detection

In this section, we evaluate the results of the same ob-

ject detection. We begin by assessing the impact of CRF

and the multimodal approach using our original dataset.

Next, we compare the performance of our proposed method
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Table 1: Result of detection of same objects in original dataset[%]

ARI AMI H C V

Unary 45.12 51.13 98.35 89.51 93.72

CRF & p 78.86 81.46 99.57 94.80 97.12
CRF & p + v 77.08 80.60 99.72 94.51 97.04

Table 2: Result of detection of same objects in Terrace dataset [%]

ARI AMI H C V

CRF & p + v 82.97 84.01 99.64 97.63 98.62
GNN-CCA [12] 83.07 86.77 93.59 92.03 92.66

with a state-of-the-art GNN-CCA [12]. The evaluation aims

to achieve the detection of the same objects under condi-

tions similar to our study. The GNN-CCA method also uti-

lizes similarities between images and positions, employing

a graphical model for the detection task.

4.4.1 Original Dataset

In the proposed method, we employ CRF along with mul-

tiple features to achieve a 3D position estimation. To as-

sess the contribution of these components to the accuracy

of 3D position estimation, we conducted an ablation study

comparing three scenarios: “Unary term only,” “CRF with

positional feature,” and “CRF with both position and vision

features.” Throughout this section, we will refer to these

scenarios as “Unary,” “CRF + Position,” and “CRF + Posi-

tion + Vision,” respectively.

First, we assess the performance of the same object de-

tection task by comparing the results obtained under three

different scenarios using our original video dataset. We use

several evaluation metrics including ARI, AMI, H, C, and

V. The results of this evaluation are presented in Table 1.

The results indicate that the inclusion of CRF signifi-

cantly enhances the performance compared to the situation

with the unary term only. However, the incorporation of vi-

sion similarity does not contribute significantly to the over-

all improvement in performance.

4.4.2 Terrace Dataset

To evaluate the performance of our proposed method, we

conducted a comparison with the state-of-the-art approach

using the EPFL Multi-camera pedestrians video Terrace

dataset. The state-of-the-art method chosen for compari-

son is GNN-CCA [12]. The comparison results between

our proposed method and GNN-CCA are presented in Ta-

ble 2. These results demonstrate that our proposed method

achieves comparable performance in terms of detecting the

same objects compared to the existing state-of-the-art ap-

proach, GNN-CCA.

Moreover, it is worth noting that GNN-CCA requires

training to determine the weights of the constructed graphs

Table 3: Result of 2D position estimation in Terrace dataset [cm]

error Ave. error S.D. error Max

CRF & p + v 33 75 846

Table 4: Result of 3D position estimation in original dataset [cm]

error Ave. error S.D. error Max

Unary 88 135 935

CRF & p 31 43 366

CRF & p + v 24 30 317

and also involves post-processing steps to improve the ac-

curacy of the detection. On the other hand, our proposed

method does not require graph training and does not in-

volve any post-processing. This makes our method com-

putationally lighter and more straightforward to implement

compared to the existing approach. Our proposed method

achieves comparable performance in detecting the same ob-

jects.

4.5. Evaluation of Position Estimation

Next, we evaluate the accuracy of the 3D position es-

timation using both the Terrace dataset and our original

dataset, which provides ground-truth data for both 2D and

3D positions.

4.5.1 2D Position Estimation

We evaluate the accuracy of the proposed method’s posi-

tion estimation using ground truth data. For evaluation, we

calculate the average error, standard deviation, and maxi-

mum error in position estimation. In the Terrace dataset, the

ground truth data provide correct positions on the ground

plane for individuals and are provided in a grid format with

a resolution of 25 cm by 25 cm. We consider the center

of each grid to be the ground truth position for evaluation,

acknowledging that the ground truth data itself have an er-

ror of about 10 cm. The results of the evaluation are pre-

sented in Table 3. Based on the table, the proposed method

achieves a position estimation within an error of 20 cm for

the 2D position.

4.5.2 3D Position Estimation

We evaluate the 3D position estimation using the provided

3D ground-truth position data. The results of the evaluation

are shown in Table 4.

The results indicate that the use of CRF significantly im-

proves the performance compared to the Unary Term only

situation in terms of detecting the same objects. Addition-

ally, incorporating the vision feature leads to further im-

provement in the accuracy of 3D position estimation. This

improvement can be attributed to the relationship between

the evaluation metric H (as shown in Fig. 1) and the estima-

tion of the 3D position. The metric H is associated with the
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Figure 9: 3D position error comparison

number of clusters consisting of identical objects. In our 3D

position estimation method, if different objects are mistak-

enly identified as identical objects, it can lead to increased

positional errors. Therefore, the use of multiple features fa-

cilitates the effective detection of the same objects, which is

beneficial for accurate 3D position estimation.

To analyze the error in 3D position estimation, we

consider the cumulative distribution function (CDF) and

present the results in Fig. 9. From these results, it is evident

that the “CRF” methods, especially “CRF & p + v,” sig-

nificantly improve the position estimation error. The “CRF

& p + v” method shows a smaller variance in errors and

achieves an improved position estimation by improving the

accuracy of detecting the same objects, as demonstrated by

the improved precision in the detection of the same objects.

Furthermore, the distribution that was previously present

around 100 cm in the “CRF & p” method is improved in

the “CRF & p + v” method due to the incorporation of vi-

sion features. These findings indicate that the use of mul-

tiple features, particularly the combination of two features,

leads to a more accurate and reliable 3D position estima-

tion. Therefore, it can be confirmed from this Fig. 9 that

utilizing multiple features enables the detection of the same

object that is suitable for 3D position estimation.

Finally, we examine the relationship between the detec-

tion of the same objects and the error in 3D position estima-

tion. We compare the maximum 3D position error with the

minimum number of objects representing the same instance

in a cluster for each frame, using the “CRF & p + v” method.

Fig. 10 illustrates the relationship between the detection of

the same objects and the maximum 3D position error. The

dataset used in this evaluation consists of frames where the

number of people decreases from 4 to 2 around the 1000th

frame. After the 1000th frame, there is an improvement

in both the maximum position error and the number of the

same objects detected. As the number of detections of the

same object decreases, the position error tends to increase.

In particular, frames with only one same object exhibit a

significantly large error, exceeding 100 cm. Conversely, in

situations where more same objects are detected, there is a

Figure 10: The max position error and the min number of same

objects in a cluster per frame

noticeable reduction in positional error. When all four iden-

tical objects, which correspond to the number of cameras,

can be detected, the error is suppressed to around 20 cm.

On the basis of these observations, it can be inferred that

detecting more identical objects and capturing objects with

a higher number of cameras contribute to a reduction in the

error in 3D position estimation.

4.5.3 Inference Time

In addition, we need to discuss about the inference time of

the program used above. We run the python program on

Intel i7 with a 8-cores CPU running at 3.60GHz. In this

situation, it is capable of execution at approximately 10 fps,

depending also on the number of detected objects. From

this result, the proposed method is capable of estimating

positions in real time and can be utilized for HRC.

5. Conclusion
We propose a method for 3D position estimation to re-

alize human-robot collaboration. Our approach utilizes a

graph structure with a MRF as a generative model and a

CRF as a learning model for detecting the same objects.

We introduce a multimodal approach that incorporates both

vision and positional characteristics. In the evaluation, we

conduct an ablation study to demonstrate the effectiveness

of BP in our proposed method. Furthermore, through com-

parative evaluation using open datasets, we achieve perfor-

mance comparable to the state-of-the-art method for detect-

ing the same objects. Additionally, we demonstrate the abil-

ity to estimate 3D positions with an error of approximately

20 cm.
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