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Abstract

In response to the challenges faced in documenting med-
ical procedures in military settings, where time constraints
and cognitive load limit the completion of life-saving Tac-
tical Combat Casualty Care (TCCC) Cards, we present a
novel end-to-end computer vision pipeline for autonomous
detection and documentation of common military emer-
gency medical treatments. Our pipeline is specifically de-
signed to handle limited and challenging data encountered
in military scenarios. To support the development of this
pipeline, we introduce SimTrI, a labeled dataset comprising
116 twenty-second videos capturing patients undergoing
four prevalent treatment procedures. Our pipeline incorpo-
rates training and fine-tuning of object detection and human
pose estimation models, complemented by a proprietary
pose-enhancement algorithm and a range of unique filter-
ing and post-processing techniques. Through comprehen-
sive development and optimization, our pipeline achieves
exceptional performance, demonstrating 100% precision
and 62% recall on our dedicated 23-video test set. Fur-
thermore, the pipeline automates the generation of TCCC-
relevant information, significantly improving the efficiency
of TCCC documentation. Comparative analysis against
previous state-of-the-art techniques in emergency medical
autonomous documentation demonstrates that our pipeline
performs exceptionally‡
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1. Introduction
In 2009, Secretary of Defense Robert Gates’ Golden

Hour policy mandated that all critically injured military per-

sonnel, known as “battlefield casualties,” that are at risk

of losing life, limb, or eyesight, would receive a medical

evacuation from the point of injury to surgical care within

sixty minutes or less [30]. The Golden Hour originates from

renowned military surgeon R. Adam Cowley, who identified

the urgency for treatment in the hour following an injury,

stating “There is a golden hour between life and death. If

you are critically injured, you have less than 60 minutes to

survive. You might not die right then; it may be three days

or two weeks later – but something has happened in your

body that is irreparable” [27]. Studies later determined that

this time was much lower, between 19 and 23 minutes [3].

Currently, combat medics are required to use a portion

of this valuable, limited time to document interventions on

the casualty via a tactical combat casualty care (TCCC)

Card, which is essential for informing higher echelons of

care (flight medics and hospital surgeons) of the casualty’s

status. An estimated time for a combat medic filling out

a TCCC Card and conducting a patient hand-off is about

3 minutes [23]. However, numerous studies indicate this

TCCC documentation leads to an increased survival rate

among casualties [24, 5]. By doctrine, this card should be

attached to the casualty [6]. Unfortunately, two senior US

Army combat medics interviewed by this project estimated

that only 10− 15% of TCCC Cards reach the surgical team

receiving the casualty [23, 22]. Because of the inherent time

constraints and the unreliability of the TCCC Card, casualty

status is often communicated only verbally at the patient
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hand-off. This communication is conducted between the

combat medic and flight medic in a noisy, high-stress envi-

ronment via the much shorter and less informative MIST

Report - a report summarizing Mechanism of injury, In-

juries, Symptoms, and Treatments for a patient [28].

In this paper, we introduce a novel pipeline utilizing

computer vision for autonomous TCCC documentation,

shown in Fig. 1. To do so, we introduce the first-of-its-

kind Simulated Trauma Interventions (SimTrI) dataset, train

computer vision models with limited and challenging data,

propose a variety of filtering methods, develop our own al-

gorithm to support pose algorithms facing challenging par-

tial body data, and design unique evaluation metrics spe-

cific to our use-case. If implemented as a fielded prototype,

this software would significantly decrease the time and cog-

nitive load combat medics currently face when document-

ing casualty status. As a result, medics could solely con-

centrate on delivering life-saving interventions. Moreover,

with automated generation and digital formatting, such a

system would guarantee that every TCCC Card (as shown

in Fig. 2) reaches all levels of medical care before the ar-

rival of the casualty, ensuring comprehensive coverage and

enabling preparation for specific procedures at higher eche-

lons of care.

2. Related Works
In recent years, the field of emergency medicine, both in

military and civilian contexts, has faced challenges in ef-

ficiently documenting and transmitting casualty treatment

information across different levels of care. Several stud-

ies have addressed this issue, employing various techniques

with differing levels of automation [26, 20, 31, 25, 10]. One

notable manual approach was the US Air Force’s BATDOK

system, which provided combat medics with a user interface

for manual data entry [14]. However, feedback from mili-

tary combat medics revealed that this manual data entry was

impractical in high-stress combat environments [25, 22, 23].

To enhance autonomy, researchers explored two primary

avenues: wearable biosensors and machine learning (ML)

methods.

Considering wearable biosensors, several studies have

successfully achieved autonomous detection of critical bio-

metrics for emergency treatment, including the BATDOK

system. However, these technologies primarily focused

on capturing physiological data and did not provide actual

treatment information [2, 26]. The application of machine

learning (ML) has been primarily limited to the use of auto-

matic speech recognition (ASR) for documenting medical

treatments. Woo et al. utilized noise-resilient ASR, multi-

style training, customized lexicon, and speech enhancement

to predict medically relevant treatment speech at a word er-

ror rate of 33.3% [31] to fill out a TCCC Card. This was

done by using the Switchboard and Common Voice datasets

to train a base ASR model; subsequent modular model im-

provements were made by generating battlefield noise with

a generative adversarial network and domain-specific med-

ical and military data from the Carnegie Mellon Univer-

sity Sphinx Knowledge Base Tool. Similarly, McGeorge

et al. heavily relied on ASR and systemic functional gram-

mar models to detect and parse medically relevant text [20].

This group also introduced a small computer vision compo-

nent, but this was limited to optical character recognition for

implementing patient identification. While these advance-

ments reduced the need for manual documentation, they still

required medical teams to provide speech input, adding to

the cognitive load of combat medics in high-stress military

environments.

The application of computer vision in the medical field

has seen significant progress [7]; however, its utilization in

emergency treatment documentation remains limited. A no-

table study by Heard et al. introduced a pipeline that utilized

Myo devices on a medic’s hands to extract arm movements

and electromyography data, enabling the detection of var-

ious emergency room treatments [10]. Despite this effort,

the study’s performance fell short of achieving more than

50% accuracy for all treatments.

One of the primary reasons for the scarcity of com-

puter vision-based research in this domain is the inher-

ent challenges associated with the data. Firstly, the avail-

ability of visual data within medical treatment spaces is

constrained due to legal and ethical medical privacy con-

cerns, resulting in limited datasets [11]. Secondly, ego-

centric data captured from medics treating patients often

exhibit partial body views and rare poses. Patients are

frequently in a lying-down position, which presents chal-

lenges for pose algorithms, as important information such

as facial features may be occluded in many frames. Sev-

eral studies have endeavored to address these challenges

[18, 19, 17, 8]. For instance, Vyas et al. developed a

3D synthetic model generation pipeline to augment body

pose data, mitigating the issues posed by limited data in

critical applications like healthcare [29]. Liu et al. intro-

duced the Simultaneously-collected multimodal Lying Pose

dataset to specifically tackle the challenges associated with

lying-down, partially occluded poses [16].

To overcome the hurdles associated with autonomously

documenting emergency military medical treatments, we

have devised an innovative computer vision-based end-to-

end pipeline. This pipeline has been designed to operate

effectively, even when faced with limited and challenging

data, allowing for real-time identification of treatments ad-

ministered to military casualties.

3. Methods
In this section, we present our end-to-end pipeline for the

detection and documentation of casualty status, supported
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Figure 1. Illustration of our comprehensive pipeline for casualty status documentation. The pipeline consists of two main stages,

shown from left to right. In the first stage (Pairing Matrix Creation), the input video is processed frame by frame, and relevant

detections are analyzed and summarized to generate a pairing matrix. In the second stage (Video Post Processing), the summa-

rized detections undergo post-processing to extract TCCC-relevant information. Subsequently, in the Results Generation stage, the

pipeline generates a digital TCCC card formatted with the extracted information, and its metrics are reported based on the ground

truth data.

Figure 2. An illustration of the tactical combat casualty care

(TCCC) Card.

by our novel dataset called Simulated Trauma Interven-

tions (SimTrI). We begin by introducing the SimTrI dataset,

which serves as the foundation for training and evaluating

our pipeline. Subsequently, we delve into the details of the

pipeline, which encompasses the entire process from receiv-

ing a video as input to generating treatment information in

a matrix format, mirroring a portion of the content typically

seen on a TCCC Card.

3.1. SimTrI Dataset

Due to operational security concerns and the unavail-

ability of public datasets, we collaborated with US Army

Special Forces combat medics to generate a unique dataset

specifically designed for our study. This dataset, named

Simulated Trauma Interventions (SimTrI), consists of 116

Figure 3. Example screenshots from a variety of videos in the

Simulated Trauma Interventions (SimTrI) dataset. Faces are

blurred to protect the identities of the personnel used in these ex-

ample images.

egocentric videos that were carefully recorded and ap-

proved by the school and Army Institutional Review Boards

(IRB). SimTrI features simulated casualties represented by

a mannequin and three human subjects with diverse racial

backgrounds and body types. The videos capture the perfor-

mance of four standard military trauma care interventions:

tourniquet application, pressure dressing, hemostatic dress-

ing, and chest seal placement. These interventions were se-

lected because they allow for a range of anatomical place-

ment options, necessitating the incorporation of a localiza-

tion component into our research pipeline. Furthermore,

these treatments are commonly taught to all military per-

sonnel as part of Combat Life Saver (CLS) training [9]. It is

essential to emphasize that the individuals responsible for

video documentation in SimTrI are CLS certified military
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personnel, ensuring the accuracy and adherence to estab-

lished medical protocols. The videos were recorded using

a helmet-mounted camera positioned approximately three

inches above the forehead. The camera was set to record at

a rate of 30 frames per second and aligned with the user’s

line of sight.

In Fig. 3, we provide sample screenshots from various

videos within the SimTrI dataset, illustrating the diversity

of scenarios and interventions captured in the dataset. By

creating the SimTrI dataset in collaboration with US Army

Special Forces combat medics, we have obtained a valuable

resource for training and evaluating our research pipeline.

This dataset enables us to explore new solutions for the de-

tection and documentation of trauma interventions in mili-

tary settings, ultimately enhancing the care provided to ca-

sualties in the field.

Nevertheless, the process of capturing the SimTrI dataset

presented certain difficulties. Due to the unique poses and

movements of the casualties, as well as the close proximity

of the medics to the patient, there were instances where the

recorded frames focused primarily on a specific body part,

without capturing the face and neck regions. This partic-

ular challenge poses a significant obstacle for current hu-

man pose estimation (HPE) algorithms, as they heavily rely

on visible face and neck features to accurately estimate the

pose of an individual.

3.2. Casualty Status Documentation Pipeline

Treatment detection, pose estimation, and the pairing

process for treatment localization are the key components

of our pipeline, as shown in Fig. 1. To achieve this, we cus-

tomized and incorporated YOLOv5 [12] and Lightweight

OpenPose (LOP) [21] as the backbone for treatment detec-

tion and pose estimation, respectively. These frames are

then processed through the pipeline’s components, enabling

treatment detection, pose estimation, and ultimately visual-

izing the treatments on the TCCC card.

Problem Formulation– This pipeline takes a set of

frames, denoted as F , as input. Let f denote an individual

frame in F , such that F = {f1, . . . , fg}, where g = |F |.
Ti is defined as the array of all treatments detected in frame

fi. Additionally, Ki is defined as the pose key point array

corresponding to the patient in frame fi. If there are multi-

ple pose arrays detected in fi, the largest pose (by bounding

box area which encloses key points) is selected as Ki. Fi-

nally, it is important to note the treatment detector is trained

on m classes, and the pose detector is trained to recognize

n key points to form a human skeleton.

It is critical to pair any detected treatment with a pose key

point, in order to localize the treatment to part of the body.

To do this, a pairing matrix is used to count the number of

pairings made between any detected treatment and pose key

point. Upon initiating the pipeline and receiving F as input,

this pairing matrix, denoted as P , is initialized with shape

(n x m). All values in P are initially set to 0. P is shown

below.

P =

∣∣∣∣∣∣∣
p00 · · · p0n

...
. . .

...

pm0 · · · pmn

∣∣∣∣∣∣∣
Per-Frame Detector– After P is initialized, the per-frame

detector (PFD) is sequentially run on all f ∈ F , updating P
with the treatment-key point pairings made in each frame.

PFD is introduced in Fig. 1 and expounded upon in Fig. 4.

PFD receives a frame fi as input and runs it through the

treatment detector and the human pose estimation (HPE)

model to output Ti and Ki. If either Ti or Ki is empty, fi is

ignored, and PFD moves on to the next frame. Otherwise,

PFD optionally employees a pose enhancement algorithm

to enhance Ki, and then maps any detected treatment to the

nearest key point while also considering various restriction

criteria to filter erroneous detections, as described below.

Pose-Enhancement Algorithm– Given that the data is

challenging as many frames only show part of the patient

and the patient is often taking on a rare pose, the pipeline

may optionally utilize our custom pose-improvement al-

gorithm introduced by this paper, called Pose-Enhancing

Transformation Algorithm (PeTA). PeTA is used to enhance

any Ki which is incomplete, by adding missing key points

to Ki based on poses from previous frames.

PeTA continually estimates a mean casualty pose matrix

B of shape (n×2) which contains all key points of the stan-

dard LOP pose representation. B may then be used to esti-

mate missing joints in frames for which the detected pose is

incomplete. To iteratively build B for any frame fi, a run-

ning Procrustes average [13] is calculated from the set of all

frames prior to fi with complete key point arrays. The first

frame’s key point array of this set is used as the initial esti-

mate of B. Each subsequent frame’s key point array in the

set is mapped to B by finding the optimal similitude trans-

formation (rotation, translation, and scale) that minimizes

the median of squares between corresponding key points.

Least median of squares (LMedS) is applied to optimize the

transformation and enhance resilience against outliers and

noise. The mapped key points are averaged. B is then up-

dated to this new average, and the process is repeated for all

remaining frames in the set.

B becomes useful when a Ki does not contain all n
points, but only detects a subset of points, as often happens

on the challenging data in this topic – that is, 3 < |Ki| < n.

In this case, B may be used to estimate the missing joints in

Ki, denoted as Ki−missing . To do this, it is first necessary

to estimate an optimal similitude transformation between B
and Ki, to produce a transformation matrix, denoted as τ .

LMedS is once again utilized to increase robustness. τ is

then applied to B to obtain an estimate of the current key
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Figure 4. Illustration of our per-frame detector (PFD) pipeline. From left to right, PFD receives a single frame as input. It indepen-

dently searches for a treatments and a patient pose, optionally employing a pose enhancement algorithm on the detected pose. It

considers these detections against three restriction criteria. If all criteria are passed, each detected treatment is mapped to the nearest

respective key point of the patient pose.

Figure 5. An example of the application of our Pose-Enhancing Transformation Algorithm (PeTA). From left to right, this figure

shows the input image, the image following the application of the Lightweight OpenPose (LOP) [21] algorithm, and finally the

image after using PeTA to infer the missing joints. Note that the face is blurred for the purposes of this paper, but is not blurred for

LOP or PeTA algorithms.

points K̂ = τ(B). The missing points are then taken from

this estimate so that Ki−missing = K̂i−missing .

Finally, the estimated missing key points are concate-

nated to Ki, to form a complete pose key point array. An

example of this process is shown in Fig. 5. It is important

to note that some of the key points inferred from PeTA are

often outside the frame, due to the partial-body nature of

the data. Ultimately, PeTA enables estimation of pose key

points for frames which fail to detect a full pose but still

detect a partial pose. However, for frames that detect fewer

than four pose key points (|Ki| ≤ 3), PeTA is not utilized

and the frame is not considered in treatment-key point map-

ping.

Treatment Key Point Mapping– For any treatment ti ∈
Ti for some frame fi, it is assumed this treatment is on the

casualty and must be mapped to some key point ki ∈ Ki. To

do this, for all ti ∈ Ti, a binary mapping is performed to the

nearest pose key point in Ki and P is updated accordingly

for ∀ t ∈ Ti as:

Pt,k = Pt,k +

{
0 if any r ∈ R is False

1 else argmin
k∈Ki

dist(k, t) (1)

A set of restriction criteria R, are also introduced in

Eq. (1) to remove pairings that are unlikely to be cor-

rect. Any criterion may be tuned to achieve a more

or less restrictive pipeline. R is summarized as R =
{distmin, areamin, jointsmin}. Here, distmin indicates the

normalized minimum pixel distance requirement between

a potential key point-treatment pairing. Next, areamin in-

dicates the minimum normalized pixel area requirement of

a Ki bounding box for the pose to be valid and used for

key point-treatment pairing. Lastly, jointsmin indicates the

minimum number of joints in Ki for the pose to be valid. If

any criterion in R is false, the pairing is not counted.

Video Post-Processing– After all f ∈ F have been an-

alyzed, P is now denoted as P ∗. Going forward, each col-

umn in P ∗, denoted as P ∗t∈T is considered independently, as

it forms a histogram indicating the various body locations a

given treatment class has been mapped to throughout the

entirety of F . Now, the casualty may be analyzed at limb-

treatment level pairings by summing the entries from P ∗t∈T
that correspond to the same limb to produce L∗t∈T . Then,

for each L∗t∈T , any limbs that are invalid for a given treat-

ment are dropped (for example, a tourniquet may not be
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Figure 6. Example of P ∗
t being converted to L∗

t , where t is tourni-

quet.

placed on head, so these erroneous entries are replaced with

a 0). The process of converting a treatment column (or his-

togram) from the joint level to the limb level is depicted in

Fig. 6.

Next, temporal outlier detections for L∗t∈T may be fil-

tered. This filtering process is optional. To determine if any

pairing in some L∗t is a temporal outlier, its z-score is com-

puted, denoted as z, with respect to other pairings within

the same L∗t . For any frame fi, it is assigned a value of 1

if fi contributed to L∗t , and a 0 if it did not contribute. A

window of w frames preceding fi is then considered, where

all frames also have a value of either 1 or 0. The average

of the window μw and the standard deviation of the window

σw are calculated.

The z-score z is computed using the formula: z =
fi−μw

σw
. It measures the number of standard deviations by

which the pairing value of fi deviates from the average

within the window. If the calculated z-score z exceeds a

predefined threshold t, we consider the pairing at frame fi
as an outlier and remove it from further consideration in L∗t .

The purpose of this filtering step is to identify and exclude

pairings that are temporally distant from other pairings, and

therefore likely erroneous. This process of z-score filtering

is conducted for all L∗t∈T . Fig. 7 demonstrates an example

of this process.

Generating Metrics and Results– Finally, majority

voting over L∗t∈T is performed to output a TCCC Card pre-

diction for the m treatments the treatment detector is trained

on. To model this digital TCCC Card, a new binary array

denoted as H is created with shape (m x |L|), where 1 in-

dicates a treatment on a limb is present at the respective

index, and 0 indicates the opposite. To predict H from L∗,
the following is used:

Ht,� =

{
1 L∗t,� ≥ max�̂∈L L∗

t,�̂
× c

0 otherwise,
(2)

where, for any t ∈ T and � ∈ L, Ht,� will be 1 if the corre-

sponding L∗t,� is greater than the maximum value across all

limbs for that t times some constant c, such that c < 1.

Using L∗ and H , this paper reports two types of metrics

- TCCC metrics to determine the accuracy of the outputted

TCCC Card and raw metrics to determine the accuracy of

L∗. Per-video ground truth labels denoted as Y are utilized

to determine these metrics. Similar to H , Y is a binary

array with shape (m x |L|), where 1 indicates a treatment

on a limb is present at the respective index, and 0 indicates

the opposite.

For TCCC metrics, true positives TPH , false positives

FPH , and false negatives FNH are provided. For raw met-

rics, only true positives TPL and false positives FPL are

provided since per-frame truth labels are unavailable to de-

termine the accuracy of negatively predicted frames.

The calculation for TCCC metrics are shown in Eq. (3)

through Eq. (5) and the calculation for raw metrics are

shown in Eq. (6) through Eq. (7), where Ŷ = 1 − Y and

Ĥ = 1 −H . From these equations, this paper reports pre-

cision PT and PR for TCCC and Raw metrics respectively,

and recall RT for TCCC metrics.

TPH =
m∑
a

|L|∑
b

Hab × Yab (3)

FPH =
m∑
a

|L|∑
b

Hab × Ŷab (4)

FNH =
m∑
a

|L|∑
b

Ĥab × Yab (5)

TPL =
m∑
a

|L|∑
b

L∗ab × Yab (6)

FPL =
m∑
a

|L|∑
b

L∗ab × Ŷab (7)

4. Experimental Results
This section presents the experimental results for our

pipeline. We begin by discussing the performance of our

treatment detector and pose estimation models. Subse-

quently, we evaluate the overall performance of our pipeline

using different pipeline configurations. All the results are

obtained using our dedicated 23-video test set, which is a

subset of the SimTrI dataset. All videos in the test set are of

one human subject in uniform. This human subject was not

present in any training or fine-tuning sets.

4.1. Treatment Detection Results

We trained our modified YOLOv5 model with three

datasets: (1) the BBN PTG-MAGIC dataset (soon to

be publicly available) [1], (2) an open-source RoboFlow

dataset [4], and (3) our SimTrI dataset. We utilized an
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Figure 7. Example of Z-Score Filtering for Leg Detections. The x-axis indicates the frame number within the test video, while the

y-axis indicates the presence of a pairing from the given treatment to the respective limb. This example graph demonstrates the

utilization of Z-Score filtering to effectively eliminate erroneous detections on the right leg while preserving accurate detections on

the left leg.

Table 1. Training data and results for the highest-performing

YOLOv5 model.

Treatment Annotations Precision Recall

Tourniquet 13459 87% 54%

Pressure Dressing 9652 94% 80%

Hemostatic Dressing 982 80% 96%

Chest Seal 11211 94% 92%

Average 8826 89% 81%

Table 2. An overview of the pose estimation models, including

their names, the number of annotations used in fine-tuning - human

or mannequin - and their performance measured as Percentage of

Correct Keypoints (PCK). The Base model is the out-of-the-box

LOP model. Mann and HuMann are fine-tuned on mannequin data

and both mannequin and human data respectively.

Model Name Human Mannequin PCK

Base 0 0 38%

Mann 0 553 51%

HuMann 540 553 57%

80%-20% train-test split, initialized with the YOLOv5 pre-

trained weights and freezing no layers. For the purpose of

labelling, we defined four classes each corresponding to the

various treatments we seek to predict in SimTrI. Tourni-

quets presented a unique challenge as they are small and

often blend in with the body. In addition, the appearance of

a tourniquet significantly changes once it is applied to the

body. This often resulted in a large number of false nega-

tives. The training set annotations and model performance

are summarized in Table 1.

4.2. Pose Estimation Results

For developing our HPE model, we utilized the pub-

licly provided LOP training weights, trained initially on the

COCO dataset [15] for 370,000 training iterations. We fine-

tuned these weights with different strategies using labeled

images from both mannequin and human videos in SimTrI

and evaluated these models on 152 randomly selected im-

ages of humans in uniform from SimTrI. The 2nd and 3rd

columns of Table 2 show the number of images in the train-

ing set for various fine-tuned pose models for human and

mannequin data respectively with roughly the same num-

ber of images with and without uniform clothing. The Per-

centage of Correct Keypoints (PCK) scores are reported in

the last column of Table 2. The best results are obtained

when we use both mannequin and human images in train-

ing. Apart from having relatively small training and test

datasets, a particular challenge to this data is the lack of face

or neck in many images as pose estimation relies on detect-

ing and associating key features on the body with one an-

other. Additionally, the uniform worn by the subject is un-

like the clothing found in most HPE training datasets. How-

ever, our model learns well, and the mannequin-only model

clearly shows generalizability to human test data. This indi-

cates strong potential for scalability, as human data is more

difficult to obtain within the medical domain, but if man-

nequin data may achieve similar results, this pipeline may

be easily scaled for broader future use.

4.3. End to End Pipeline Results

We evaluated the overall performance of our end-to-end

pipeline with SimTrI. We analyzed our pipeline’s precision

and recall based on Eq. (3) through Eq. (7). The results are

reported in Table 3.

In these results, we evaluated the impact of various pa-

rameters. We considered all HPE models (see Table 2), the

z-score filtering window size w (if z-score is applied), the

majority vote c value in Eq. (2), as well as the use of PeTA.

We also considered the restriction parameters R in Eq. (1).

Our results indicate our pipeline could provide the soft-

ware backbone of a promising solution to emergency med-

ical documentation. While our baseline model alone strug-

gles to achieve high-level results, we demonstrate in Table 3

that the iterative improvements our pipeline implemented

throughout Section 3 enable favorable results.

First, we show our base pipeline with no parameters in

use, providing a baseline score. Next, we show that post-

video filtering via majority voting and z-score filtering lead
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Table 3. Results of our pipeline with different parameters. In the table, T, F, and NA represent True, False, and Not Applied, respectively.

PT and RT denote TCCC precision and recall for the respective pipelines, while PR indicates raw precision for the respective pipeline.

HPE w dmin αmin jmin c PeTA PR PT RT

Base NA 1 0 1 0 F 67% 37% 48%

Base 60 1 0 1 .5 F 73% 68% 48%

Base 60 1 0 1 .5 T 85% 90% 59%

Base 60 .25 .1 10 .5 F 91% 96% 52%

Mann 60 .1 .1 5 .5 F 94% 100% 57%

Mann 60 .25 .1 5 .5 F 94% 96% 62%
HuMann 60 .1 .1 1 .5 F 99% 100% 62%

HuMann 60 .25 .3 1 .5 T 96% 96% 62%
Mann 60 .5 .1 1 .5 T 93% 100% 62%

to improvements in all metrics. Then we demonstrate that

the addition of either filtering with R parameters or utilizing

PeTA can improve results. However, we found that utilizing

both at the same time provided sub-optimal results on the

Base LOP model.

We next consider LOP fine-tuned models. We show

with relatively little data, fine-tuning our LOP model with

mannequin-only data leads to significant improvement for

our overall pipeline, indicating promising results for the

generalizability of mannequin data to our problem set.

However, utilizing both mannequin and human data leads

to slightly higher metrics for our pipeline, as expected given

the test data is solely human data.

Consequently, we add PeTA for our optimal Mann and

HuMann pipeline configurations. Here, it is important to

note that the most important metrics are the TCCC-metrics,

as this predicts the accuracy of a TCCC card, the end goal

output. When we compare our optimal Mann pipeline con-

figuration with PeTA, against the overall optimal configu-

ration (which uses HuMann, but no PeTA), we find these

pipelines produce the exact same TCCC-metrics. The im-

plications of this must not be understated. This implies

that by fine-tuning only on mannequin data and tuning our

pipeline parameters, we may achieve the same TCCC re-

sults that we would achieve with human data. Given sig-

nificant ethical and legal considerations often slow progress

for the collection of human data, these results indicate this

research may scale more rapidly than it would if it were de-

pendent on human data for optimal results.

It is worth noting that in the context of combat medics,

high precision is considered more important than high re-

call [23]. This is because false positives can be more detri-

mental than false negatives, as they would require medics

to verify the accuracy of the entered data, which could be

time-consuming and hinder their workflow. Conversely,

false negatives, where certain areas are left blank, do not un-

dermine the medics’ trust in the software or discourage its

usage, as they can easily fill in the missed areas while still

benefiting from the detections in other areas. Therefore, our

ability to achieve high precision is a promising outcome for

future research aiming to develop a fielded prototype based

on this software pipeline.

5. Conclusion and Future Work
In response to the critical need for automated TCCC

Card documentation within the US military, we have in-

troduced a comprehensive end-to-end pipeline for military

treatment documentation. In addition to this processing

pipeline, we have created and curated the SimTrI dataset,

which represents a significant contribution to this applica-

tion domain and enables researchers to develop new com-

puter vision solutions.

Our processing pipeline leverages state-of-the-art tech-

niques, utilizing human pose estimation and object detec-

tion as its foundation, while incorporating various filtering

and post-processing methods to enhance the accuracy of the

results. Despite encountering several challenges during the

development process, including the limited number of la-

beled frames and the partial visibility of facial features or

the full body of casualties in the SimTrI dataset, we have

achieved highly favorable results. Our pipeline attained an

excellent precision rate of 100% in accurately predicting

TCCC-relevant information, with a recall rate of 62%, in-

dicating a substantial level of accuracy in identifying and

localizing treatments administered.

Looking ahead, there are several exciting avenues for

further advancements. Future work should focus on ex-

panding the capabilities of our pipeline to encompass a

wider range of treatments and incorporate a more diverse

set of patients, thereby enhancing its applicability and ver-

satility in various scenarios. Furthermore, optimizing the

recall rate will be a key objective, aiming to increase the

percentage of accurately predicted TCCC Cards. Addition-

ally, ongoing efforts will be dedicated to refining and im-

proving the underlying machine learning models that form

the foundation of our pipeline.
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