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Abstract

Sign Language Translation (SLT) is a challenging task
that aims to generate spoken language sentences from sign
language videos, both of which have different grammar
and word/gloss order. From a Neural Machine Transla-
tion (NMT) perspective, the straightforward way of training
translation models is to use sign language phrase-spoken
language sentence pairs. However, human interpreters
heavily rely on the context to understand the conveyed infor-
mation, especially for sign language interpretation, where
the vocabulary size may be significantly smaller than their
spoken language equivalent.

Taking direct inspiration from how humans translate,
we propose a novel multi-modal transformer architecture
that tackles the translation task in a context-aware manner,
as a human would. We use the context from previous se-
quences and confident predictions to disambiguate weaker
visual cues. To achieve this we use complementary trans-
former encoders, namely: (1) A Video Encoder, that cap-
tures the low-level video features at the frame-level, (2) A
Spotting Encoder, that models the recognized sign glosses
in the video, and (3) A Context Encoder, which captures the
context of the preceding sign sequences. We combine the
information coming from these encoders in a final trans-
former decoder to generate spoken language translations.

We evaluate our approach on the recently published
large-scale BOBSL dataset, which contains ∼1.2M se-
quences, and on the SRF dataset, which was part of
the WMT-SLT 2022 challenge. We report significant im-
provements on state-of-the-art translation performance us-
ing contextual information, nearly doubling the reported
BLEU-4 scores of baseline approaches.

1. Introduction

Sign languages are visual languages and the primary lan-

guages of Deaf communities. They are languages in their

Figure 1. An overview of the proposed multi-modal sign language

translation architecture.

own right, as rich as any spoken language, and can vary

considerably between countries with strong dialect differ-

ences within a country [16]. They have their own lexicons

and grammatical constructs, thus converting between sign

and spoken language is a translation problem.

Sign Language Recognition (SLR) [44] and Sign Lan-

guage Translation (SLT) are active research areas within

computer vision [5, 10, 54, 57]. While SLR focuses on

the recognition of signs within a video, SLT aims to gen-

erate meaningful spoken language interpretation of a given

signed phrase or vice versa. In our work, we focus on

the former part of SLT, namely translating continuous sign

videos into spoken language sentences.

Automatic SLT is a challenging problem for a number

of reasons. Firstly, as stated, sign languages have their own

grammar, they are not translated simply word-by-word by

replacing words with signs [49]. Secondly sign languages

contain many channels that are used in combination i.e.

hand articulation, facial expression, and body posture are

all used in combination and their use can vary depending on

context. For example, the hand shape of a sign may change

depending on the context. A good example of this would

be the verb ‘to give’. The verb ‘give’ is directional and the

direction of the motion is subject to the placement of ob-
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jects and use of space in front of the signer. But the hand

shape can also change depending on the type of object be-

ing given. Thirdly, motions can be subtle or fast and this

leads to motion blur. Finally, many sign can also look very

similar. All of these factors make it difficult to recognize the

sign that is being performed without the context in which it

is used.

Human interpretation or translation of sign languages

heavily relies on context, as it is fundamental to all lan-

guage understanding. Consider the use of homophones in

spoken language. An active listener has no issues in the

disambiguation of homophones despite the fact there are no

auditory cues to help. This is because we are able to use

the context to disambiguate the meaning of the homophone.

However, much of the SLT work to date has neglected such

context, focusing largely on sentence pairs. In fact, most

machine translation datasets shuffle the order of sentences,

making it impossible to utilize the context from the previous

sentences.

In this work, we propose a novel sign language transla-

tion architecture that incorporates important contextual in-

formation. It combines weak visual cues from a 3D con-

volutional backbone with strong cues from the context and

sparse sign spottings. An overview of the approach can be

seen in Figure 1.

We evaluate our approach on the largest available sign

language dataset, BOBSL [3], which covers a wide domain

of various topics. We obtain significant performance im-

provements by incorporating context and automatic spot-

tings (1.27 vs. 2.88 in BLEU-4). We also evaluate our ap-

proach on the WMT-SLT 2022 challenge data, specifically

the SRF partition, and surpass the reported performance of

all challenge participants.

The contributions of this paper can be summarized as:

• We propose a novel multi-modal transformer network

that incorporates the context of the prior information

and automatic spottings.

• We conduct extensive experiments to examine the ef-

fects of different approaches to capturing context.

• Our approach achieves state-of-the-art translation per-

formance on two datasets, namely BOBSL, the largest

publicly available sign language translation dataset,

and the WMT-SLT 2022 challenge data.

The remainder of the paper is organized as follows: In

Section 2, we summarize the related work. In Section 3, we

describe our proposed sign language translation network. In

Section 4, we provide information about the datasets we use

and provide model training details. Section 5 presents the

experimental results of the proposed method and we con-

clude the paper in Section 6.

2. Related Work
Sign Language Recognition (SLR) has seen consistent

research effort from the computer vision community for

decades [12, 48, 56]. The advances in models and tech-

niques, also the release of recent isolated [3, 22, 30, 46],

and continuous [23, 28] SLR datasets have led to signifi-

cant improvements in the accuracy and robustness of sign

language recognition systems.

SLR can be grouped into two sub-problem; isolated and

continuous SLR. While the isolated SLR videos contain

only a single sign, continuous SLR videos contain multiple

sign sequences. After the emergence of 2D convolutional

neural networks (CNNs), 2D CNNs were quickly applied

to model the visual appearance in SLR [35, 39, 40, 46]. Se-

quence models such as the recurrent neural network (RNN)

[40], long short-term memory (LSTM) [46], hidden markov

model (HMM) [51] have all been used to encode temporal

information. Following 2D CNNs, 3D CNNs were devel-

oped and have achieved state-of-the-art performance on a

wide range of computer vision tasks, including sign lan-

guage recognition [2, 22, 26, 30].

In addition to images, researchers have also used other

input modalities for SLR, such as depth, skeleton, optical

flow, and motion history image (MHI) to improve recogni-

tion accuracy [21, 25, 35, 46, 47]. Some studies also intro-

duced the use of different cues such as cropped hands and

faces [11, 18], or an attention mechanism [13, 47] to obtain

better discriminative features.

These advances in the field of isolated SLR have also

been applied to continuous SLR. Since continuous SLR

videos contain multiple co-articulated signs, it is a more

challenging problem. The explicit alignment between the

video sequence and gloss sequence generally does not ex-

ist. In order to tackle this problem, Connectionist Temporal

Classification (CTC) [17] is widely used [11, 20, 43, 59].

Sign Language Translation (SLT) is still in its infancy

due to the lack of large-scale sign language translation

datasets. While machine translation datasets for spoken

languages contain many millions of sentence pairs such as

22.5M for English-French, and 4.5M for English-German

pairs (WMT shared tasks [4]), the first public SLT dataset

PHOENIX14-T [5], which was released in 2018, had only

8K sentences and its domain of discourse was limited to

weather forecast. The authors handle the SLT as a Neu-

ral Machine Translation (NMT) problem and proposed the

first end-to-end SLT model by combining CNNs with the

attention-based encoder-decoder network with RNNs.

One of the most significant advances in NMT was the

introduction of the Transformer network by Vaswani et. al

[52], which is based solely on attention mechanisms and

waives recurrent networks, for the sequence transduction

problem. Camgoz et al. [7] applied transformer architecture

to the sign language translation problem. In recent years,
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transformers have become popular in SLT [15, 54, 55, 57].

Some studies tackle SLT with a two-stage approach, i.e.,

in the first part glosses are recognized from sign videos

(Sign2Gloss), and then glosses are mapped into a spoken

language sentence (Gloss2Text) [5, 55]. On the other hand,

some studies deal with an end-to-end solution that pre-

dicts the spoken language sentence from sign video inputs

[7, 57].

Zhou et al. [57] proposed a two-stage approach, but

unlike others, their approach is based on back-translation.

They convert spoken language text to sign sequences with

both text-to-gloss and gloss-to-sign steps to generate syn-

thetic data. They used the synthetic samples as additional

data and trained an end-to-end SLT method based on the

transformer. Zhou et. al [58] and Camgoz et. al [6] also uti-

lized multiple cues for the SLT task, such as hands and face.

To the best of our knowledge, and perhaps surprisingly, us-

ing context has not been exploited in the literature. How-

ever, Papastratis et. al [36] did use the previous sentence

to initialize the hidden state of a BLSTM for predictions of

the next video sequence to improve recognition accuracy in

a continuous SLR. They obtain slightly better results when

the context-aware gloss predictions were fed into the trans-

former for SLT.

Datasets: PHOENIX14-T [5] became the most com-

monly used dataset in the literature. The performance on

this dataset is generally satisfactory to provide a usable

translation, e.g., Chen et. al [10] obtained 28.39 in terms of

BLEU-4 score. However, due to its limited domain of dis-

course, models trained on PHOENIX14-T have little real-

world applicability. To address this, researchers released

several datasets in recent years [3, 8, 33]. The largest to date

is BOBSL [3], a broadcast interpretation-based large-scale

British Sign Language (BSL) dataset. Their SLT baseline

is based on the transformer network and obtains only 1.0 in

terms of BLEU-4. Recently, Swiss German Sign Language

(DSGS) broadcast datasets were introduced in the first SLT-

WMT shared task [33], where all the submissions scored

under 0.56 in terms of BLEU-4. Yin et. al [54] collect the

first multi-lingual dataset for multiple sign language trans-

lations and proposed the first multi-lingual SLT model. Al-

though significant progress has been made in the area of

SLT, there is still room for further improvement.

3. Method
Most sign translation datasets and especially those based

on broadcast interpretation [3, 5, 33], contain a set of con-

secutive sign phrase videos (V1, ...., VM ) and spoken lan-

guage sentences (S1, ..., SN ). In some datasets, such as

Phoenix2014T [5], sign phrase videos and their spoken lan-

guage translations are paired and the order of the pairs are

shuffled and distributed between training and evaluation

sets. Unfortunately, this destroys the context of the sen-

tence. Datasets like BOBSL [3] release the video and sen-

tence sets with only weak alignment. Although this is gen-

erally regarded as a weakness, making subsequent learning

from the data more challenging, it has a fundamental advan-

tage that we make use of in this work: it allows the use of

context to improve the translation.

Given an input video V = (x1, x2, ..., xT ) with T
frames, the aim of a sign language translation is to learn

the conditional probability p(S|V ) in order to generate a

spoken language sequence S = (w1, w2, ..., wU ) with U
words.

We propose to take advantage of the contextual infor-

mation that comes from the preceding context, SC =
(Sn−1, Sn−2, Sn−3, ...). We also make use of sparse sign

spottings, Sp = (g1, ..., gK), automatically recognized

from the current video V using a state-of-the-art model.

Thus, we extend the classical translation formalization to

one of learning the conditional probability p(S|V, SC , Sp).
This conditioning allows weak and ambiguous visual cues

in V to be disambiguated based on context.

Our translation network is based on a transformer archi-

tecture and contains three separate encoders, Ev, Ec, Es for

each of the different input cues, i.e., video, context, and

spottings, and a multimodal decoder, D, which learns the

mapping between all input source representations and the

target spoken language sentence. A detailed overview of

our model is shown in Figure 2.

3.1. Embedding Layers

Following the classic neural machine translation meth-

ods, we first project source and target sequences to a dense

continuous space via embedding layers. In order to repre-

sent video sequences, we utilize pretrained CNNs. For lin-

guistic concepts that originate from written text in the form

of the preceding and target spoken language sentences and

spotted sign glosses, we use word embedding layers.

Sign Embedding: To convert a given video, V , to its

feature representation, we use the I3D model [9] as a back-

bone due to its recent success in sign recognition tasks.

We first divide the videos into smaller video clips, ct =
(xt, ..., xt+L−1) of size L. In our experiments we use a

window size of L = 16 to obtain the sign video embedding:

ft = SignEmbedding(ct) (1)

We stride SignEmbedding over the full video V with the

step size of 4, thus yielding a final feature set of f1:T−L
4 +1.

We considered two types of features as the output of our

sign embedding layer, namely a) 1024-dimensional repre-

sentation that is extracted from the last layer before classi-

fication, and b) C-dimensional class probabilities after the

softmax activation function. We conduct experiments us-

ing both of these feature representations in our translation

pipeline and compare their performance.
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Figure 2. A detailed overview of the proposed multi-modal sign language translation architecture.

Feature Embedding: To avoid biases caused by dimen-

sionality we project the extracted feature representations

into the same size denser space using a linear layer. We

also employ layer normalization to transform them to be of

the same scale. This feature embedding operation can be

formalized as:

f̂t = FeatureEmbedding(ft) (2)

Word Embedding: We first tokenize our spoken lan-

guage sentences using a pretrained BERT model [14]. More

specifically we employ the BERT-base-cased and BERT-
base-german-cased from the Huggingface’s Transformer li-

brary [53], which uses WordPiece tokenization. The word

embedding layer is shared between all the text input cues,

such as spottings, context sentences, and shifted target sen-

tences.

Positional Encoding: In order to provide sequential or-

der information to our networks we use the standard posi-

tional encoding method as proposed in [52] in the form of

shifted sine and cosine waves. This is added after the fea-

ture and word embedding layers. This positional encoding

can be formalized as:

f̄t = PositionalEncoding(f̂t) (3)

3.2. Translation Network

After embedding layers, positionally encoded features

and word vectors are sent to the transformer encoders.

Our encoders have a stack of two identical layers each of

which has a multi-headed self-attention and a fully con-

nected feed-forward layer. Each of these two sub-layers is

followed by a residual connection and layer normalization.

Video-Encoder: The video encoder network, Ev , takes

the positionally encoded feature vectors f̄1:T−L
4 +1 that

come from the feature embedding layer and produces a

spatial-temporal representation hv
1:T−L

4 +1
that captures the

motion and content of the video.

Context-Encoder: The context encoder, Ec, takes po-

sitionally encoded-word embedding results from preceding

context, SC , and produces representations, hc, which cap-

ture the context in which the currently signed phrase is per-

formed.

Spotting-Encoder: The spotting encoder network, Es,

takes positionally encoded spotting embeddings Sp and

produces representations hs that correspond to confident but

sparse sign detections that have been spotted in the current

video, V , that we are attempting to translate. See Section

4.2 for details of the sign spotting technique [32] we used

in our experiments.
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Decoder: After encoding each input modality, the out-

put of the encoder layers hc, hv, hs, and the positionally en-

coded and shifted spoken sentence is then sent to the trans-

former decoder D. We extend the classical transformer

decoder architecture [52] by introducing several encoder-

decoder attention layers, which combine and enrich the rep-

resentations coming from complementary cues of informa-

tion. The network flow can be formalized as:

hc = ContextEncoder(SC)
hv = VideoEncoder(V )
hs = SpottingEncoder(Sp)
S∗ = Decoder(hc, hv, hs, S′)

(4)

where S′ and S∗ correspond to the shifted and predicted

target sentences, respectively. In words, firstly, the word

embeddings extracted from the shifted spoken language em-

bedding S′ are passed to the masked self-attention layer.

Then, our first encoder-decoder attention layer takes out-

puts of the masked self-attention and context encoder, hc.

The output of the context encoder-decoder attention is sent

to the video encoder-decoder attention to be used as a query,

while the key and the value come from the video encoder,

hv . In a similar way, the spotting encoder-decoder atten-

tion performs attention operations over hs and the previous

layer. Finally, the last representation of the transformer de-

coder is projected to the space of the target vocabulary using

a linear layer to predict the target spoken language sentence

S∗, one word at a time.

We train our network using cross-entropy loss as pro-

posed in [52], by comparing the predicted target sentence

S∗ against the ground truth sentence S at the word level.

4. Dataset and Implementation Details
4.1. Datasets

SRF is a Swiss German Sign Language (DSGS) dataset

that was recently released for the WMT-SLT 2022 challenge

[33] as one of the training corpora. It contains daily news

and weather forecast broadcast. It includes 16 hours of sign

footage, divided into 29 episodes, performed by three sign-

ers. In total 7,071 subtitles were manually aligned by Deaf

annotators. Separate development and test sets were pro-

vided in the WMT-SLT. We use the SRF dataset for train-

ing and used the official development and test sets for the

evaluation of the model to be able to compare our approach

against the methods presented in the challenge.

BOBSL [3] is a large-scale British Sign Language (BSL)

dataset that consists of BSL-interpreted BBC broadcast

footage covering a wide range of topics. The dataset has

an approximate duration of 1,400 hours and contains around

1.2M sentences. While the training and validation set’s sub-

titles are audio-aligned, the test data is manually aligned and

contains 20,870 sentences with a vocabulary size of 13,641.

4.2. Sign Spotter

Momeni et al. [32] released automatically extracted

dense annotations for the BOBSL dataset. We use these an-

notations as the spotting input on the BOBSL experiments.

The key idea is that a set of video clips with a particu-

lar sign must have a correlation at the time when the sign is

performed. Taking inspiration from [32], we create similar

automatic dense annotations for the SRF dataset by corre-

lating the I3D features and examplar subtitles. To do this,

firstly we lemmatize and lowercase each word in the subtitle

sentences and extract a vocabulary list. German language

has compound words by concatenating two words. In order

to reduce the number of singletons in the vocabulary list,

we use the compound-split library [1]. Then, for each word

w, we take a reference video clip V0 that contains w in its

subtitle sentence. We choose random N = 9 positive video

examples V1, V2, .., VN that contain the word w in their sub-

titles, and 3∗N negative video examples that do not contain

w to avoid annotating non-lexical signs. We compute the

cosine similarities between reference and examplar video

features. We apply a voting scheme among the videos with

cosine similarity above 0.5 to find the location of the given

word in the reference video.

4.3. Implementation Details

Sign Embeddings: For full-body video inputs, we pre-

train two different I3D models which we call BSL-I3D and

DGS-I3D on two different sign language datasets, namely

BOBSL [3] and MeineDGS [29]. While training the BSL-

I3D model we use the annotations released with the dataset

[3] which has a vocabulary size of 2,281. For MeineDGS

we use the linguistic annotation available with the dataset.

In order to obtain a similar size vocabulary of 2,301 classes,

we choose classes that have more than 12 occurrences.

We resize the input images to 224 × 224 and follow the

training instructions of [3] with some small modifications;

we use the Swish activation function instead of ReLU and

change the learning rate scheduler to reduce on a plateau.

We also use label smoothing of 0.1 in order to help reduce

overfitting.

Training and Network Details: Our model is imple-

mented using PyTorch [38]. We use the Adam [27] opti-

mizer with an initial learning rate of 3 × 10−4 (β1 = 0.9,

β2 = 0.999, ε = 10−8 ) with a batch size 16 on SRF; and

learning rate 6 × 10−4 with batch size 64 on the BOBSL

dataset. We reduce the learning rate by a factor of 0.7, if the

BLEU-4 score does not increase for five epochs. This step

continues until the learning rate drops below 10−5.

For transformer encoders and the decoder, we use two

layers with 8 heads. We conduct an ablation study to choose

the size of the hidden layers and the feed-forward layers (in

section 5.1). We choose 512 and 1024, respectively. We use

0.1 for the dropout rate.
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During training, we use a greedy search to evaluate trans-

lation performance on the development set. At inference,

we evaluated both a greedy search and a beam search (de-

coding size of 2 and 3) for our video-to-text approach.

However, we did not observe a significant improvement in

scores. Therefore, we provide greedy search performances

on both validation and test set.

Metrics: We use BLEU-1, BLEU-4 [37], ROUGE [31],

and CHRF [41] scores, which are commonly used metrics

for machine translation, to evaluate the performance of our

model. As ROUGE, we use ROUGE-L F1 score; as BLEU

score we use the sacreBLUE [42] implementation.

5. Experiment Results
We run our experiments in an end-to-end manner on two

recently released sign language datasets, namely the SRF

partition of WMT-SLT [33] and BOBSL [3], which is the

largest sign language dataset available. For each dataset,

we train baseline models that have one encoder and one de-

coder, and take only one input source, i.e., the preceding

context (using the preceding spoken sentence or preceding

spottings), current spotting, or video. We name our single

modality models as Context-to-Text, Spot-to-Text, Video-to-
Text, respectively.

Then, we investigate the impact of integrating context

information to the Spot-to-Text or Video-to-Text approaches

by adding a context encoder and using a dual-mode trans-

former decoder with the related encoder-decoder attention

layers. Finally, we investigate using all sources simulta-

neously to gain more information. We combine all three

sources using three separate encoders and a decoder. We

name our final model as Context+Video+Spot-to-Text.

5.1. Experiments on SRF partition of WMT-SLT

Video-to-Text: We evaluate our Video-to-Text model

which takes only the video source and tries to generate spo-

ken language in an end-to-end manner.

First, we conduct ablations studies on the SRF parti-

tion of the WMT-SLT dataset using different types of input

channels for the Video-to-Text model. We run our experi-

ments with different numbers of hidden size (HS) and feed-

forward (FF) units, with 64 × 128, 128 × 256, 256 × 512,

512 × 1024, 512 × 2048. We obtain similar results with

512 × 1024 and 512 × 2048, where 512 × 1024 is slightly

better. Therefore, for the rest of our experiments, we use

512× 1024 parameters for HS×FF.

Table 1 shows our ablation experiments against the base-

line [34] on the WMT-SLT development set. We repeat each

experiment 3 times and report the mean and standard devia-

tion of scores. All our experiments outperform the baseline.

We do not observe any significant difference between the

BSL or DGS-pretrained I3D model on the WMT-SLT. Our

best score, obtained using BSL-I3D features, was 1.51 in

terms of BLEU-4. On the other hand, class probabilities

obtain lower BLEU scores than feature embeddings. There-

fore we use BSL-I3D features going forward for our video

encoder.

Size BLEU-1 BLEU-4 CHRF
Baseline [34] - 0.58 -

BSL-P 2281 14.26 ± 0.47 1.01 ± 0.2 17.0 ± 0.17

DGS-P 2301 14.6 ± 0.55 1.03 ± 0.08 17.03 ± 0.47

BSL-F 1024 15.86 ± 0.2 1.23 ± 0.25 17.27 ± 0.15

DGS-F 1024 15.14 ± 0.44 1.17± 0.08 17.13 ± 0.12

Table 1. Evaluation of different features for SLT on WMT-SLT

development set. BSL-F: BSL-I3D features, DGS-F: DGS-I3D

features, BSL-P: BSL-I3D class probabilities, DGS-P: DGS-I3D

class probabilities.

BLEU-1 BLEU-4 CHRF ROUGE
MSMUNICH [15] - 0.56 17.4 -

SLT-UPC [50] - 0.5 12.3 -

SLATTIC [45] - 0.25 19.2 -

Baseline [33] - 0.12 5.5 -

DFKI-MLT [19] - 0.11 6.8 -

NJUPT-MTT - 0.10 14.6 -

DFKI-SLT [24] - 0.08 18.2 -

Ours

- Video-to-Text 14.43 0.81 18.18 5.60

- Context-to-Text 12.80 0.69 14.48 3.73

- Context+Video-to-Text 14.33 1.00 18.12 6.00

- Spot-to-Text 22.11 1.87 22.23 11.17

- Context+Video+Spot-to-Text 31.36 3.93 24.69 17.65

Table 2. Comparison with the literature on the full WMT-SLT test

set.

Table 2 shows the comparison of our approach against

the participants of the WMT-SLT shared task [33]. All ap-

proaches are based on Transformer architectures [52]. Simi-

lar to our Video-to-Text, MSMUNICH [15] also uses an I3D

model for feature extraction and obtained the highest score

of 0.56 in BLEU-4. While they use an I3D model pretrained

on BSL-1K [2], we pretrained our I3D on the BOBSL [3]

which provides better feature representation and a slight im-

provement.

Context-to-Text: Here, we are testing how well a net-

work can guess the content of a sentence given the context

of the preceding sentence. To do this, we need ordered data.

Although the development and test data of the SRF parti-

tion of WMT-SLT consists of segments extracted from sev-

eral episodes, the segments contain consecutive numbers for

each episode. Therefore, we used sorted segments to eval-

uate our Context-to-Text model. As can be seen in Table 2,

Context-to-Text, which takes only the previous sentence as

a source, performs worse than our Video-to-Text. However,

its BLEU-4 performance is still superior, and CHRF per-

formance is competitive to the literature, which verifies that

contextual information provides important cues for transla-

tion tasks.

Context+Video-to-Text: Next, we combine context and

video sources by including a context encoder, a video en-
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Val Test
BLEU-1 BLEU-4 ROUGE CHRF BLEU-1 BLEU-4 ROUGE CHRF

Context-to-Text
- 1 preceding sentence 13.50 0.45 5.59 10.0 13.41 0.45 6.10 10.4

- 2 preceding sentence 13.21 0.52 5.11 10.2 13.34 0.42 5.54 10.4

- 3 preceding sentence 13.32 0.51 5.36 10.2 13.0 0.43 5.59 10.5

- Max 10 spottings 13.77 0.74 6.33 10.88 12.90 0.60 6.01 10.76

- Max 20 spottings 13.88 0.75 6.36 10.9 12.96 0.56 6.07 10.66

Spot-to-Text 21.97 2.25 8.52 19.4 21.63 2.21 9.45 19.7

Context+Spot-to-Text 22.77 2.56 9.98 19.9 21.68 2.43 10.0 19.72

Table 3. Performance of our text-to-text models on the BOBSL dataset.

Val Test
BLEU-1 BLEU-4 ROUGE CHRF BLEU-1 BLEU-4 ROUGE CHRF

Albenie et. al [3] - - - - 12.78 1.00 10.16 -

Video-to-Text
- trained with 274K 15.15 1.02 12.71 19.7 12.68 0.83 8.32 17.9

- trained with 1M 18.8 1.28 7.91 17.7 17.71 1.27 8.9 18.8

Context+Video-to-Text
- 1 preceding sentence 20.18 1.53 9.13 18.2 19.11 1.51 9.94 19.3

- 2 preceding sentence 19.14 1.52 8.97 18.0 18.15 1.41 9.56 18.9

- 3 preceding sentence 20.05 1.56 9.08 18.1 18.82 1.48 9.64 19.1

- Max 10 spottings 20.84 1.71 10.03 18.21 19.05 1.50 9.95 18.94

Context+Video+Spot-to-Text
-with 1 preceding sentence 25.06 2.73 11.12 22.6 24.07 2.81 12.07 23.7

-with max 10 spottings 25.94 3.07 12.27 23.69 24.29 2.88 12.41 24.53

Table 4. Impact of the integrating context and spottings information to video-to-text approaches on the BOBSL dataset.

coder, and a decoder, which we call Context+Video-to-Text.
Incorporating context information besides video features

improved our translation results as we expected.

Spot-to-Text: In the literature, ground truth sign glosses

are used to train a text-to-text translation model to create an

upper bound for end-to-end translation [5]. Motivated by

this, we created spottings as described in 4.2 using our BSL-

I3D model. The trained Spot-to-Text model achieves sig-

nificantly better translation performance compared to other

single-modality architectures.

Context+Video+Spot-to-Text: Finally, we integrate au-

tomatically created spottings as input to the spotting en-

coder. The performance gain is significant when com-

pared to Context+Video-to-Text and Spot-to-Text, showing

the benefits of the incorporation of complementary infor-

mation cues. However, this result should be taken as an up-

per bound on performance as the spotting approach requires

a prior over the spoken word occurrence. This artificially

inflates the performance but as can be seen, the potential

benefits of accurate spotting on translation are significant.

5.2. Experiments on BOBSL

Context-to-Text: We evaluate training Context-to-Text
with two different types of data on the BOBSL; a) preceding

sentences and b) preceding spottings. As can be seen in Ta-

ble 3, using only the preceding text data leads to poor trans-

lation. Firstly, we experiment with increasing the context

by providing more preceding text. While using more sen-

tences provides a slight improvement in terms of the BLEU-

4 and CHRF scores on the validation set, it did not help in

the other scores or on the test set. In the experiments with

preceding spottings, we experiment with different numbers

of spottings. We use the spottings from up to 3 previous

sentences since we do not see a significant improvement

when we include more prior sentences in the previous ex-

periments. We obtain better results when we use the spot-

tings of 3 prior sentences, but limit the maximum number

of spottings to just 10.

Spot-to-Text: We utilized the sign spottings [32] of the

BOBSL to evaluate our Spot-to-Text model. We train our

model using all automatic annotations without any thresh-

olding, which obtains 21.63 and 2.21 for BLEU-1 and

BLEU-4 on the test set, respectively.

Video-to-Text: In [3], the authors provide an SLT base-

line that is trained on a subset of the BOBSL training

set. They created their new training set for sign language

translation by filtering the sentences that contain high-

confidence automatic spottings. They selected words that

occur at least 50 times in the training set and constructed

sentences by filtering according to this vocabulary. They

also discard sentences with over 30 words, yielding 274K

sentences. To provide a comparison, we first train our

Video-to-Text network on this subset. However, transform-

ers tend to get better results with more data. Therefore, we

1961



also train our model using all sentences as in the “version
v1 2” of the BOBSL dataset for which the training set con-

tains about 1M sentences. In this experiment, our BLEU-4

score increased to 1.27 from 0.83 as seen in Table 4.

Context+Spot-to-Text: Firstly, we combine context and

spotting sources by having a context encoder, a spotting

encoder, and a decoder, which we call Context+Spot-to-
Text. We set the maximum number of spottings to 10.

Context+Spot-to-Text achieved better results than Spot-to-
Text (2.21 vs 2.43 BLEU-4 score in the test set).

Context+Video-to-Text: Then, we evaluate the

Context+Video-to-Text model. We use all training videos

and all validation videos in our multi-modal experiments.

As can be seen in Table 4, when using prior spoken text

as input for context-encoder, our Context+Video-to-Text
model achieves a significant improvement over our Video-
to-Text model on both the manually aligned test set (1.27 vs.

1.51 BLEU-4, and 12.68 vs. 19.11 BLEU-1) and validation

set (1.28 vs. 1.53 BLEU-4, and 18.8 vs. 20.18 BLEU-1).

We also investigate using a different number of preceding

sentences. Similar to Context-to-Text experiments, increas-

ing the number of preceding sentences does not improve the

translation quality. On the other hand, we experiment with

the preceding spottings for the context-encoder. Although

we obtain a much better result in the validation set (1.53 vs.

1.71 BLEU-4), we get similar results in the test set. This

shows that using either the preceding sentences or preced-

ing spottings provides similar context and helps to provide

better translation.

Context+Video+Spot-to-Text : Finally, we train our

transformer using all modalities. Our final approach is able

to surpass all previous models and obtains state-of-the-art

on the BOBSL dataset test set, with 2.81 for BLEU-4 and

24.07 for BLEU-1.

Qualitative results: In this section, we share trans-

lations produced by the proposed model using different

modalities and discuss our qualitative findings. As shown

in Table 5, we compare our Video-to-Text, Context+Video-
to-Text and Context+Video+Spot-to-Text to better analyze

the contribution of using the preceding context and current

spottings. The results show that although translation qual-

ity is not perfect, context information helps us to get closer

to the true meaning when compared to Video-to-Text. As

shown in the first example, the ground truth translation is

“He lost nearly 200 sheep during the prolonged heavy snow
in April.”. While Video-to-Text model is able to infer only

“sheep” correctly, Context+Video-to-Text model produces

“Two sheep have been killed by the weather.”, which is a

closer meaning.

6. Conclusion
In this paper, we have proposed a novel multi-modal

transformer architecture for context-aware sign language

Ex#1 GT: He lost nearly 200 sheep during the pro-

longed heavy snow in April.

V2T: The sheep are rounded up and the autumn

begins to drift away.

(C+V)2T: The two sheep have been killed, and the

two have been killed by the weather.

(C+V+S)2T And the sheep are in the middle of April,

and they’re all farmed in the winter.

Ex#2 GT: You can see it’s quite a different shape...

V2T: It’s a very different story.

(C+V)2T: It’s a very different shape.

(C+V+S)2T It’s a different shape.

Ex#3 GT: With the crops on the farm, summer is a

busy time of year with harvest just around

the corner.

V2T: It’s a real dramatic change in the night and

it’s a real labour of love.

C+V2T: It’s a very busy time of year, but it’s a very

busy time of year.

(C+V+S)2T: During the summer, the farm is busy graz-

ing and the farm is busy harvesting.

Table 5. Qualitative results of the proposed method on the

BOBSL. V2T: Video-to-Text, (C+V)2T: Context+Video-to-Text,
(C+V+S)2T : Context+Video+Spot-to-Text.

translation. Our approach utilizes complementary trans-

former encoders, including a spotting and video encoder for

modeling the current sign phrase and a context encoder for

capturing the context of preceding sign sequences. These

encoders are then combined in a final transformer decoder

to generate spoken language translations. We evaluate our

approach on two sign language datasets with large domains

of discourse and obtain state-of-the-art results by doubling

the BLEU-4 score. We hope this work will encourage the

exploration of new model ideas on large-scale sign language

translation. A future direction may include exploring the

leverage of context, such as to alleviate the local ambiguity

for similar signs, or to improve spottings performance.
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España-Bonet, et al. Findings of the first wmt shared task

on sign language translation. pages 744–772, 2022.

[34] Mathias Müller, Annette Rios, and Amit Moryossef.

Sockeye baseline models for sign language trans-

lation. https://github.com/bricksdont/
sign-sockeye-baselines, 2022.

[35] Natalia Neverova, Christian Wolf, Graham Taylor, and Flo-

rian Nebout. Moddrop: adaptive multi-modal gesture recog-

nition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(8):1692–1706, 2015.

[36] Ilias Papastratis, Kosmas Dimitropoulos, and Petros Daras.

Continuous sign language recognition through a context-

aware generative adversarial network. Sensors, 21(7):2437,

2021.

[37] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing

Zhu. Bleu: a method for automatic evaluation of machine

translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 311–318,

2002.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-

perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

[39] Lionel Pigou, Sander Dieleman, Pieter-Jan Kindermans, and

Benjamin Schrauwen. Sign language recognition using con-

volutional neural networks. In European conference on com-
puter vision, pages 572–578. Springer, 2014.
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