
BluNF: Blueprint Neural Field

Robin Courant1* Xi Wang1* Marc Christie2 Vicky Kalogeiton1

1LIX, Ecole Polytechnique, IP Paris 2Inria, IRISA, CNRS, Univ. Rennes

Abstract

Neural Radiance Fields (NeRFs) have revolutionized
scene novel view synthesis, offering visually realistic, pre-
cise, and robust implicit reconstructions. While recent ap-
proaches enable NeRF editing, such as object removal, 3D
shape modification, or material property manipulation, the
manual annotation prior to such edits makes the process te-
dious. Additionally, traditional 2D interaction tools lack an
accurate sense of 3D space, preventing precise manipula-
tion and editing of scenes. In this paper, we introduce a
novel approach, called Blueprint Neural Field (BluNF), to
address these editing issues. BluNF provides a robust and
user-friendly 2D blueprint, enabling intuitive scene edit-
ing. By leveraging implicit neural representation, BluNF
constructs a blueprint of a scene using prior semantic and
depth information. The generated blueprint allows effort-
less editing and manipulation of NeRF representations. We
demonstrate BluNF’s editability through an intuitive click-
and-change mechanism, enabling 3D manipulations, such
as masking, appearance modification, and object removal.
Our approach significantly contributes to visual content
creation, paving the way for further research in this area.

1. Introduction
The demand for realistic and taylored 3D scenes is in-

creasing for various applications, ranging from artistic pur-

poses like movie and video game creation to more practical

uses in architecture and design. While traditional methods,

like photogrammetry and light-field encoding, have facili-

tated the reconstruction of 3D scenes from multiple view-

points [40, 23], recent advancements in deep learning, such

as Neural Radiance Fields (NeRF) [30, 3, 4, 48] have shown

impressive capabilities in capturing and rendering realistic

scenes. However, editing and manipulating NeRF represen-

tations remains challenging.

Existing works propose various NeRF editing tech-

niques, such as scene composition using multiple

NeRFs [54], manipulation of rendering properties [21], de-

formations through mesh-to-NeRF mappings [55], and ob-

*Equal contribution.

Figure 1: Generating a blueprint from multiple views of a

scene can be challenging. (top) Traditional multiple-view

reconstruction methods (MVR) depend on the diversity of

views, and suffer from occlusions (black areas in MVR

blueprint). Instead, our proposed BluNF addresses these

by leveraging an implicit neural representation of the scene.

(bottom) BluNF associated with NeRF enables scene edit-

ing, such as changes in appearance or texture.

ject removal using user-provided masks [51]. However,

selecting and editing NeRF views present specific chal-

lenges, particularly when relying on traditional 2D inter-

action tools that lack a true sense of 3D space (e.g. 2D

screens, keyboards and mice). Especially when considering

the needs of designers/users who often rely on simplified or

partial views of scenes for higher-level semantic manipu-

lation. Blueprints, commonly used in architectural designs,

establish a clear link between the semantic representation of

entities and their underlying geometric structure, providing

a foundation for constructing real scene layouts. Beyond

architectural applications, blueprints find utility in diverse

computer vision and graphics applications, including mo-

tion planning [18], navigation [1, 14], and cinematographic

staging [29]. Their use in all these domains highlights the

enduring significance of blueprints as a means of conveying

abstract scene information for various purposes.

In this paper, we present an approach for constructing a

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

2878

semantic editable blueprint from multiple viewpoints of a

scene by leveraging prior semantic and depth information.

Our novel Blueprint Neural Field module, BluNF, gener-

ates a 2D semantic-aware editable blueprint that is robust

to noise and sparse observations. Notably, BluNF enables

user-friendly editing of NeRF representations. To the best

of our knowledge, we are the first to employ an implicit

neural field to construct a 2D semantic-aware blueprint for

editing purposes, as most bird’s-eye-view methods rely on

CNNs or transformers [25].

First, BluNF is capable of generating blueprints even in

scenarios with incomplete depth or semantic information,

without explicit geometric constraints. It improves robust-

ness compared to multi-view-based methods [16] (MVR) or

straightforward NeRF orthogonal projections (see top-part

Figure 1). Second, BluNF introduces a novel and intuitive

editing approach for NeRF. By providing a concise and in-

formative blueprint, BluNF enables easy editing and ma-

nipulation, including changes in appearance and object re-

moval, achieved through a simple click-and-change mecha-

nism, as depicted in bottom-part Figure 1.

Our contributions are: (i) BluNF, a novel module that

generates a blueprint of a scene through an implicit neu-

ral field without explicit geometric constraints or super-

vision; (ii) an underlying representation that is robust to

sparse and noisy observations, enabling reliable semantic

layer identification and outperforming multi-view-based or

classical NeRF methods; and (iii) a combination of BluNF

with NeRF representations of the same scene, enabling in-

tuitive user manipulations on the generated 2D blueprint

(masking, appearance, removal), and enabling direct view

rendering with NeRF incorporating the edits.

2. Related work
Implicit Neural Representation. Over the past few

decades, implicit neural representations (INRs) have be-

come popular for representing complex scenes due to their

high efficiency, broad capacity, and diverse applications

[27, 30, 24]. Their core idea is to exploit neural network

representations to directly fit the target output by learning

from input data without explicit parameterization. INRs

have been successfully applied to various areas, including

meshes [56, 35], voxels and point clouds [27, 19], and light

fields [42]. Recently, NeRF [30] has shown success in real-

istic viewpoint reconstructions, synthesizing photorealistic

images of unseen views, while preserving geometric con-

sistency and handling reflective lighting conditions.

To enhance the learning process and improve the repre-

sentation performance of INRs, numerous techniques have

been introduced: SIREN [43] proposes a periodic activa-

tion function to fit complex and generic natural signals and

derivative information such as images, acoustics, and spatial

data. [46] propose a frequency-based Positional Encoding

(PE) to extract features for improving fitting performance,

especially in high-frequency areas. HashGrid [32] leverages

hash encoding to address the ambiguity and smoothing is-

sues, achieving gain in both fitting performance and training

speed. In our work, we show that choosing the appropriate

encoding scheme can have a substantial impact on the INR

performance (Section 4.2).

NeRF. The original proposal for NeRF was made by

Mildenhall et al [30], with the main contribution of a Po-

sitional Encoding-supported MLP network to encode 5D

spatial and view angle information. The pixel-wise multi-

views image is constrained by computing the ray-based vol-

umetric rendering. Subsequent improvements and deriva-

tives have been proposed in order to enhance the system’s

image synthesis performance [4, 3], robustness to sparse

views [33], and support for dynamic scenes [39, 36], etc.

Moreover, NeRF has become a powerful system capable

of producing not only photorealistic rendering images, but

also fitting various genres of applications. For instance, Zhi

et al. [58] propose adding a semantic head parallel to the

RGB one for semantic digit rendering. A similar task is

also investigated in [49], where the main idea is to exploit

the density field during the NeRF training.

Recently, [54] shows how to edit disentangled objects by

constructing multiple NeRF models dedicated to each ob-

ject and then combining them for scene rendering. This en-

ables translating, rotating and scaling pre-defined objects in

the scene. A similar concept is adapted in [13, 22, 57] by

combining composition functionality with dynamic or se-

mantic scene representations for more detailed user manip-

ulations. GAN-based NeRF systems [41, 34, 8] provide an-

other fresh perspective on the task of generating NeRF, yet

do not enable manipulating pre-trained NeRF. In our work,

we use the proposed BluNF for manipulating and editing a

pre-trained NeRF representation of a scene.

Layout. Scene reconstruction is a longstanding problem

in computer vision and graphics [9, 38, 59], traditionally

tackled with 3D geometry techniques such as SfM [40]

and SLAM [52, 50]. However, with the recent develop-

ment of deep neural networks (DNNs), the reconstruction

problem has evolved to encompass a variety of applica-

tions: from explicit supervised reconstruction [47, 10] to

2D BEV (Bird-Eye-View) extraction for autonomous driv-

ing applications [25, 15], and to INR-based reconstruc-

tion [5]. For reconstruction, various systems are proposed

for different targets, scales [11, 53, 48], and usage scenarios,

ranging from terrain [11, 53, 48] and urban [45] to indoor

scenes [37] or surface reconstruction applications [2]. For

editing, various systems allow for customizations, such as

geometric editing or object removal [54, 55], color or style

changing [17, 21], and generative manipulation [41, 34].

Nevertheless, most editing methods suffer from non-

intuitive handling of 3D content (particularly in NeRF).

2879

Figure 2: Overview of BluNF training pipeline. BluNF

leverages camera parameters K,R, t and pixel depth d
to establish a mapping from pixel coordinates (u, v) to

blueprint coordinates (x, y). This mapping is achieved

through the geometric projection module Π. The result-

ing blueprint coordinates (x, y) are then fed as inputs to the

neural field module BΘ, which predicts the corresponding

semantic label ŝ. We use the semantic label s associated to

pixel coordinates (u, v) as supervision target.

This requires users to possess prior knowledge, to pro-

vide semantic masks for each training image [54], man-

ually annotate object contours [26, 31] or indicate a pre-

trained latent code that lacks detailed manipulation [12, 34,

41], or could involve batch operations [17, 21]. Previous

works [12, 7] partially mention the idea of 2D layout for

NeRF scene representation. However, they only focus on

acceleration or latent controlled generation and not specifi-

cally intended for editing or semantic understanding tasks.

Instead, we propose a blueprint neural representation that

enables intuitive and efficient manipulation of the layout

when combined with NeRF.

3. Method
In this work, we introduce the Blueprint Neural Field

(BluNF) that generates a 2D semantic-aware blueprint of a

3D scene from sparse semantic views. For a given scene,

a blueprint refers to a top-view semantic floorplan, as il-

lustrated in Figure 1. In Section 3.1, we show that BluNF

builds on neural implicit learning techniques by mapping

pixel-wise semantic information to corresponding blueprint

semantic labels constrained on a ray-based loss. In Sec-

tion 3.2, we elaborate on how BluNF improves the effi-

ciency and reliability of scene editing tasks.

3.1. BluNF

Figure 2 provides an overview of the BluNF training

pipeline, illustrating the two main modules: (i) a geomet-
ric projection Π and (ii) a neural field BΘ. To begin, we

employ a geometric projection module Π to map pixel coor-

dinates (u, v) from input views to 2D blueprint coordinates

(x, y). Next, the neural field module BΘ predicts a seman-

tic label ŝ from the input blueprint coordinates. Thereby,

BluNF effectively captures the underlying scene’s semantic

information, enabling to build an implicit representation of

the blueprint. Below we detail these two modules.

Figure 3: View-to-blueprint projection. Given an image

view captured by a camera with its intrinsic and extrinsic

parameters K,R, t, and a associated depth, the projection

module Π projects one pixel’s coordinates (u, v), incorpo-

rating the associated depth d back to 3D space (x, y, z). We

then project it onto the XY-plane (floor) to produce the 2D

blueprint coordinates (x, y).

Projection module. The goal of the projection module is

to transform the camera view coordinates (u, v) to blueprint

coordinates (x, y). Figure 3 illustrates this process. Given

semantic views, we project each pixel coordinate (u, v) ∈
�H,W � along with its associated semantic label s ∈ �1, Cs�
onto the 2D semantic blueprint plan, where Cs represents

the number of semantic classes. This projection, denoted as

Π, becomes feasible when the intrinsic matrix K ∈ R
3×3

and extrinsic matrix [R|t] ∈ R
3×4 associated with the cam-

era view are known, along with the depth. By leveraging

the projection matrix Π and the depth value d ∈ R at coor-

dinates (u, v), we derive the 3D coordinates (x, y, z) ∈ R
3:

⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦ = Π

⎡
⎢⎢⎣
u.d
v.d
d
1

⎤
⎥⎥⎦ , with Π−1 =

[
K 0
0 1

] [
R|t] , (1)

Next, by projecting the 3D coordinates onto the floor –

i.e., the XY plane –, we obtain the corresponding blueprint

coordinates (x, y) ∈ R
2. Consequently, for all pixel coor-

dinates (u, v) of scene views, we generate the inputs (x, y)
used as training data for the neural field module.

Neural field module. The neural field module BΘ is de-

signed to predict a semantic label ŝ associated with the pro-

jected blueprint coordinates (x, y). BΘ consists of two sub-

modules: (i) an encoding block that encodes blueprint co-

ordinates (x, y) ∈ R
2 into a higher-dimensional vector, and

(ii) an MLP that maps the encoded input coordinates to a

predicted semantic label ŝ. As depicted in Figure 2, after the

projection of semantic labels from scene views, the neural

field module learns an implicit representation of the scene’s

semantic blueprint. We choose to rely on an implicit rep-

resentation due to its robustness and the inherent ability to

handle sparse inputs, as explained in prior works [30, 43].

Training and loss. The BluNF pipeline is trained with a

cross-entropy loss that compares the projected semantic la-

2880

Figure 4: Overview of BluNF editing pipeline. It shows

the process of leveraging a pre-trained BluNF model in con-

junction with user interactions to edit a blueprint represen-

tation. During view rendering with a pre-trained NeRF, the

NeRF samples (orange dots) impacted by the edits are re-

placed by back-projected samples from the edited blueprint

(blue dots) using the inverse projection Π−1.

bel s associated with the pixel coordinates (u, v) and the

predicted semantic label ŝ generated by the neural field

module. The parameters Θ of the MLP are then updated

using standard gradient descent optimization.

Ambiguities. Geometric ambiguities may arise when pro-

jecting pixel coordinates from different views, resulting in

the possibility of two different semantic labels being pro-

jected onto close blueprint coordinates. We incorporated the

coordinate encoder in the neural field module to disentangle

these geometric ambiguities, inspired by the encoding in-

troduced in the NeRF paper [30]. By mixing both high- and

low-frequency components, the encoder enables the MLP to

distinguish points more accurately (high-frequency) while

also smoothing out ambiguities (low-frequency).

3.2. BluNF editing

Our BluNF representation is designed to enable user in-

teractions on the blueprint, and when combined with the

corresponding NeRF representation, it enables rendering

any views with the edits. Figure 4 illustrates this process.

The blueprint consists of connected components, represent-

ing groups of pixels belonging to the same semantic class,

forming distinct shapes. Through user selection, these con-

nected components can be modified by assigning new tex-

tures or completely removed from the 3D scene. To incor-

porate the edits, we use the inverse of the projection Π−1,

as defined in Section 3.1, to back-project the blueprint coor-

dinates affected by the edits onto the 3D space, creating a set

of 3D samples. During rendering, with a pre-trained NeRF

model, we replace affected samples along the rays based on

the back-projected edited samples. These sample replace-

ments can involve adjustments to the color value, density

value, or both. For instance, removing an object entails can-

celling the density value of the corresponding sample.

4. Experiments
Metrics. To evaluate the performance of BluNF, we employ

standard segmentation metrics [28]: pixel accuracy (pAcc)

and frequency-weighted IoU (fwIoU). Additionally, we re-

port the completeness factor (comp.) that measures the ratio

of the valid output area to the total blueprint plan to assess

the completeness of the reconstructed blueprint. To inves-

tigate the robustness of each method against partial obser-

vations, common in reconstruction problems [33, 16, 40],

we report results for each dataset and metric with varying

numbers of input frames (90, 45, 9).
Datasets. We test on four scenes from two 3D indoor

datasets: Replica [44] - room 0 referred to as R1, and room
2 referred to as R2 -, and MatterPort3D [6] - gZ6f7yhEvPG
referred to as M1, and pLe4wQe7qrG referred to as M2.

Replica is a synthetic dataset, while MatterPort3D contains

real-world RGB-D information. For both datasets, we man-

ually collect the ground truth blueprints from the given 3D

models by computing the orthogonal projection with care-

fully hand-selected area and culled objects to avoid vertical

occlusion (Figure 5). See supplementary for more details.

4.1. Reconstruction comparison

Compared methods. We compare BluNF to two other

methods: First, the multi-view reconstruction (MVR)

method that directly projects and gathers all pixels in the

dataset to generate the blueprint. Second, the NeRF (top)
method that computes the blueprint by sampling orthogo-

nal rays vertically to the floor in a pre-trained NeRF un-

der the same input images. NeRF (top) is sensitive to the

height selection: too low height leads to over-trimmed ob-

jects; too high height risks of being influenced by in-the-

air or corner artifacts which are less supervised. For a fair

comparison, we report the best fwIoU result among differ-

ent sampled heights. For BluNF, we report results with two

input depth sources: the ground-truth (GT) and the NeRF-

estimated depth (NeRF). Additionally, for all methods, we

use the semantic maps provided in the datasets.

Quantitative results. We compare our proposed BluNF to

both methods mentioned above and report the results in Ta-

ble 1. Overall, we observe that for the four scenes, BluNF

outperforms the other methods for all metrics and all op-

tions, i.e., number of input frames and nature of depth.

More precisely, for Replica scenes: (i) R1 (subtable top-

left): BluNF performs the best for both depth options: for

instance, with 90 frames as input, it reaches pACC of 92.6%
and 90.6% with and without ground truth depth, respec-

tively, against 88.1% and 88.3% for MVR. (ii) R2 (sub-

table top-right): MVR and BluNF using the ground-truth

depth achieve relatively high scores for all metrics and all

numbers of frames. However, BluNF generally outperforms

MVR, achieving higher scores for pACC, fwIoU, and com-

pleteness across all numbers of frames. For example, us-

2881

Figure 5: Visualizations of generated blueprints for different methods on the Replica - R1 (top-left), Replica - R2 (top-

right), textitMatterPort3D - M1 (bottom-left) and MatterPort3D - M2 (bottom-right) datasets. Each row corresponds to a

method: NeRF top-view, MVR with or without ground-truth depth, and BluNF with or without ground-truth depth. Each

column displays results for a different number of input frames.

2882

Method (depth) R1 (room 0) R2 (room 2)
pACC ↑ fwIoU ↑ comp. ↑ pACC ↑ fwIoU ↑ comp. ↑

frames 90 45 9 90 45 9 90 45 9 90 45 9 90 45 9 90 45 9

MVR (GT) 88.1 87.0 65.4 82.7 81.7 61.3 95.2 94.1 72.2 60.6 56.6 31.1 53.2 50.3 29.5 51.8 47.9 26.1
BluNF (GT) 92.6 92.7 90.0 86.7 86.9 82.3 100 100 100 71.9 71.9 58.6 60.9 60.9 49.6 100 100 100

NeRF (top-view) 82.2 80.7 69.2 72.6 71.4 58.4 97.7 97.3 93.1 51.5 40.4 31.2 44.8 34.6 27.3 56.6 49.3 47.4
MVR (NeRF) 88.3 86.8 63.1 81.0 79.5 57.2 99.1 97.8 74.3 46.9 44.3 26.0 38.7 36.4 22.3 48.4 46.2 31.4
BluNF (NeRF) 90.6 90.5 85.5 83.6 83.6 76.6 100 100 100 62.1 63.9 50.6 51.9 52.9 41.8 100 100 100

(a) Replica dataset.

Method (depth) M1 (gZ6f7yhEvPG) M2 (pLe4wQe7qrG)
pACC ↑ fwIoU ↑ comp. ↑ pACC ↑ fwIoU ↑ comp. ↑

frames 90 45 9 90 45 9 90 45 9 90 45 9 90 45 9 90 45 9

MVR (GT) 87.8 86.8 73.1 82.8 81.9 69.4 90.3 89.1 74.7 81.5 80.3 65.5 76.5 75.3 61.6 77.4 76.5 64.4
BluNF (GT) 89.0 89.1 84.2 82.9 82.9 76.5 100 100 100 87.4 87.6 82.8 80.7 80.9 75.5 100 100 100

NeRF (top-view) 80.3 80.0 73.1 73.0 72.0 64.9 100 100 100 62.5 62.8 59.5 49.0 49.5 47.4 100 100 100
MVR (NeRF) 62.0 61.3 54.5 54.5 53.9 47.7 95.5 95.2 90.5 52.3 52.5 45.9 42.9 43.1 36.9 87.3 86.8 76.9
BluNF (NeRF) 67.9 67.9 64.2 59.0 59.4 56.5 100 100 100 62.0 62.3 57.3 53.0 53.1 47.2 100 100 100

(b) MatterPort3D dataset.

Table 1: Comparison to the state of the art on Replica (a) and MatterPort3D (b) for varying number of frames (90,
45,9). For both subtables, we report results for 2 scenes (left and right), the top part corresponds to results with ground-truth

depth (GT), and the bottom part without, i.e., it uses the estimated-by-NeRF depth.

ing 90 frames, BluNF achieves pACC, fwIoU, and com-

pleteness scores of 71.9%, 60.9%, and 100%, respectively,

while MVR achieves scores of 60.6%, 53.2%, and 51.8%,

respectively. For MatterPort3D scenes: (i) M1 (subtable

bottom-left): with ground-truth depth (GT), BluNF is also

better than MVR for both pACC and fwIoU; for instance, at

90 frames it reaches 89.0% and 82.9% against 87.8% and

82.8%, for both metrics respectively. When using NeRF-

estimated depth, even though BluNF outperforms MVR

by +9.7% in pACC and +8.8% in fwIoU for 9 frames;

NeRF (top) performs the best with 73.1% of pACC and

64.9% for 9 frames as well. (i) M2 (subtable bottom-right):

with ground-truth depth, the results are similar, with BluNF

again outperforming MVR for all metrics and numbers of

frames. Interestingly, the scores are in most cases lower for

MatterPort3D scenes than for Replica scenes. We attribute

this discrepancy to the intrinsic quality differences between

the datasets. The MatterPort3D datasets rely on RGB-D ac-

quisitions that vary in quality, resulting in a relatively poorer

quality overall. For a more detailed discussion on this mat-

ter, please refer to the supplementary material.

Qualitative results. Figure 5 shows visual results of all

methods for both datasets. It highlights the failure of other

methods, notably MVR, and especially when the number

of frames is low (blacks areas in blueprints in rows 1, 2,

6, 7; columns 3, 6). Moreover, we note the high quality

of BluNF-generated blueprint (row 5, 10; columns 1, 4), in

contrast to the others (rows 2, 3, 7, 8; columns 1, 4).

900 100 50 25 10 5 1

0.25

0.50

0.75

1.00

p
A

C
C

900 100 50 25 10 5 1

0.25

0.50

0.75

1.00

fw
Io

U

900 100 50 25 10 5 1
Frame number used for reconstruction

0.25

0.50

0.75

1.00

C
o

m
p

le
te

n
es

s

MVR

BluNF

Figure 6: Ablation of number of input frames for BluNF
and MVR on Replica-R1 [44]. BluNF outperforms MVR

in all metrics for all input frame numbers. Their gap is more

notable when reducing to few input frames, i.e., less than 5.

4.2. Ablation study

In this section, we present the results of four ablation

studies to highlight the influence of: (i) the number of

frames; (ii) the impact of depth; (iii) the analysis of com-

pleteness; (iv) the different types of encoding. Most dis-

cussions and ablations are presented with the Replica R1

dataset, unless stated otherwise.

2883

Number of Frames. The number of frames is a critical

factor for almost all reconstruction methods, including both

geometric-based and learning-based approaches [33, 40]. A

low overlapping of multi-view information can lead to miss-

ing parts or erroneous estimations. In Figure 6, we compare

BluNF against MVR for different number of frames gradu-

ally reduced from 900 to 1 for Replica R1. We observe that

our BluNF outperforms MVR for all metrics. Specifically,

when the number of frames is high (e.g. some hundreds),

both methods perform similarly for all metrics. However,

the more the number of frames reduces, the more the gap

between the two methods increases. This gap becomes even

more pronounced when the number of frames is very low

(e.g., fewer than 5 frames). This highlights the fact that

leveraging the filling capacity of implicit representations

used by BluNF leads to significantly better performance.

We also observe this trend in Table 1a.

Impact of depth. Here, we examine the impact of depth

on our proposed BluNF by comparing the performance of

BluNF with GT and NeRF-based depths, i.e., rows 2 and

5 in Table 1a and 1b. For Replica dataset R1, the nature

of depth (GT or NeRF-estimated) does not influence much

the performances of BluNF. Between ground-truth and esti-

mated depth, BluNF drop around 5% of pACC and fwIoU.

For MatterPort3D M1, the impact of depth is more promi-

nent: the fwIoU of BluNF with 45 frames decreases from

82.9% with ground truth depth to 59.4% without. Those

two behaviours can be explained by the contrasted quality

between the synthetic and real-acquired depth information.

Refer to the supplementary material for more details.

Analysis of completeness. Regarding completeness,

BluNF exploits a continuous neural field and therefore its

completeness is always maximum (100%). Nevertheless,

note that for MVR this is an important drawback, and it gets

worse when the number of frames decreases. For Replica

R1 in Table 1a, MVR (GT) completeness decreases from

95.2% with 90 frames, to 72.2% with 9 frames. In addition,

it is interesting to see that NeRF-estimated depth increases

the completeness of MVR. For instance, on MatterPort3D

M1 in Table 1b with 9 frames, it increases from 74.7% with

ground truth, to 90.5% without. It is explained by the er-

ror on the estimated depth, making the projection fuzzy, yet

less accurate. Note that NeRF (top) achieves full complete-

ness on MatterPort3D as there is no ceiling semantic class,

on the contrary of Replica, polluted by ceiling predictions.

BluNF input encoding. We compare in Table 2 the effec-

tiveness of different types of encoding: (i) no encoding; (ii)

the hash encoding from Instant-NGP [32]; (iii) a SIREN-

based BluNF [43]; and (iv) the standard positional encod-

ing (PE) introduced in NeRF [30]. Firstly, the results val-

idate our claim in Section 3.1 that encoding helps to dis-

entangle the geometric ambiguities associated with the pro-

jection module. Specifically, there is a significant gap of

Encoding type pACC ↑ fwIoU ↑
Number of frames 90 45 9 90 45 9

No encoding 85.4 85.5 73.3 77.0 76.2 63.0
Hash 91.8 91.6 84.8 85.2 84.9 73.9
SIREN 91.0 91.0 84.5 84.1 84.2 75.2
PE 92.6 92.7 90.0 86.7 86.9 82.3

Table 2: Ablations of coordinate encoding in BluNF on

Replica R1 with ground-truth depth.

(a) w/o PE (b) w/ PE

Figure 7: Visual comparison of different input encod-
ings. (a) Result with positional encoding (PE), and (b) re-

sult without positional encoding (w/o PE).

up to 19.6% in fwIoU between with and without PE en-

coding schemes when using 9 input frames. In addition,

these results show that with a high number of frames, the

encoding type does not affect the results; the difference of

pACC and fwIoU between the different encoding is around

±1%. Nevertheless, when the number of frames decreases,

Hash and SIREN are highly impacted. For instance for 9
frames, we report a pACC of 84.8% and 84.5% and a fwIoU

of 73.9% and 75.2% respectively. In contrast PE seems

much less impacted with an pACC of 90.0% and a fwIoU

of 82.3%. Figure 7 presents a visual comparison of the in-

fluence of input encoding on the resulting blueprints. We

compare blueprints generated with and without positional

encoding. The comparison provides evidence supporting

our claim from Section 3.1 that positional encoding helps

disentangle projection ambiguities. Blueprint with PE ex-

hibits enhanced detail and accuracy, while those without en-

coding lack detail and are dominated by ambiguous shapes.

4.3. Editing comparison

Comparison to baselines. In this work, we compare

our BluNF editing pipeline with two baselines based on

semantic-NeRF [58]. The first baseline involves the user

choosing a semantic class to edit for the entire scene and

using the rendered semantic view of semantic-NeRF as a

mask to apply edits on the RGB view. However, as shown in

Figure 8, this approach has several drawbacks compared to

our proposed method BluNF. Specifically, as demonstrated

by the blue arrow the two armchairs are selected due to be-

longing to the same semantic class. In contrast, BluNF en-

2884

Figure 8: Editing result comparison. (Top) Semantic-

NeRF-based editing results and (bottom) our proposed

BluNF editing result.

ables us to select specific instances within the same seman-

tic class. Additionally, the purple zoom illustrates that us-

ing every pixel of the same semantic class leads to artifacts

intrinsic to semantic-NeRF, while BluNF, relying on con-

nected components, avoids selecting these artifacts, high-

lighting the flexibility of BluNF. The second baseline in-

volves using the same mask selection as in BluNF, requiring

the user to select connected components for each semantic

view. However, this approach is impractical as it would de-

mand the user to manually select connected components for

all frames, emphasizing the generalization power of BluNF.

Qualitative results. Here we present the results of the

BluNF editing pipeline introduced in Section 3.2. Figure 9

illustrates the outcomes, where the first column shows the

selected blueprint area for each application, while the sec-

ond and third columns illustrate two different synthesized

views. The applications we showcase are Object selec-
tion/masking: Our system enables the user to select in-

stances for editing by clicking on the generated blueprint.

Grouped instance is able to back-project to 3D as a high-

quality dynamic mask; Object recoloring: The user can

change the color of the selected area by simply applying

color blending; Prompt Re-texturing: The user can gen-

erate a 2D texture from a text-prompt with an external

model [20]. Our system supports direct 2D textured map-

ping on the blueprint, which can be printed on the surface of

selected objects; Sketching: Our system supports sketch-

ing or painting for editing instances; Instance Removal:
Our system supports primitive instance removal by setting

the density of the selected area to zero without requiring

re-training of the NeRF. In the last row, we show that we re-

move a vase from the table by selecting it on the blueprint.

Figure 9: Show cases of applications enabled by
BluNF. Examples of masking, recoloring, prompting, hand-

sketching and instance removal.

5. Conclusion
In this work, we introduced BluNF, a novel module ca-

pable of generating 2D semantic-aware editable blueprints

of scenes. By leveraging implicit learning with seman-

tic and depth priors, BluNF demonstrates superior perfor-

mance compared to geometric and semantic NeRF-based

methods. BluNF combined with NeRF allows various intu-

itive editing applications. It bridges the gap left by standard

editing methods, limited by their lack of 3D spatial under-

standing when relying on traditional 2D interaction tools.

6. Acknowledgment
We would like to thank Nicolas Dufour for proofread-

ing and the anonymous reviewers for their feedback. This

work was supported by ANR-22-CE23-0007 project and the

Hi!Paris collaborative project and scholarship.

2885

References
[1] Eloi Alonso, Maxim Peter, David Goumard, and Joshua Ro-

moff. Deep reinforcement learning for navigation in aaa

video games. IJCAI, 2020. 1

[2] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,

Matthias Nießner, and Justus Thies. Neural rgb-d surface

reconstruction. In CVPR, 2022. 2

[3] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratuk P. Srinivasan.

Mip-nerf: A multiscale representation for anti-aliasing neu-

ral radiance fields. In ICCV, 2021. 1, 2

[4] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. In CVPR, 2022. 1, 2

[5] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt,

Julian Straub, Steven Lovegrove, and Richard Newcombe.

Deep local shapes: Learning local sdf priors for detailed 3d

reconstruction. In ECCV, 2020. 2

[6] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d

data in indoor environments. 3DV, 2017. 4

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and

Hao Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.

3

[8] Yuedong Chen, Qianyi Wu, Chuanxia Zheng, Tat-Jen Cham,

and Jianfei Cai. Sem2nerf: Converting single-view semantic

masks to neural radiance fields. In ECCV, 2022. 2

[9] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust

reconstruction of indoor scenes. In CVPR, 2015. 2

[10] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3d-r2n2: A unified approach for

single and multi-view 3d object reconstruction. In ECCV,

2016. 2

[11] Dawa Derksen and Dario Izzo. Shadow neural radiance

fields for multi-view satellite photogrammetry. In CVPR,

2021. 2

[12] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,

Graham W Taylor, and Joshua M Susskind. Unconstrained

scene generation with locally conditioned radiance fields. In

ICCV, 2021. 3

[13] Xiao Fu, Shangzhan Zhang, Tianrun Chen, Yichong Lu,

Lanyun Zhu, Xiaowei Zhou, Andreas Geiger, and Yiyi Liao.

Panoptic nerf: 3d-to-2d label transfer for panoptic urban

scene segmentation. 3DV, 2022. 2

[14] Sukkpranhachai Gatesichapakorn, Jun Takamatsu, and Miti

Ruchanurucks. Ros based autonomous mobile robot navi-

gation using 2d lidar and rgb-d camera. In 2019 First in-
ternational symposium on instrumentation, control, artificial
intelligence, and robotics (ICA-SYMP), 2019. 1

[15] Nikhil Gosala and Abhinav Valada. Bird’s-eye-view panop-

tic segmentation using monocular frontal view. IEEE
Robotics and Automation Letters, 2022. 2

[16] Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry in computer vision. Cambridge university press,

2003. 2, 4

[17] Yi-Hua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, and Lin

Gao. Stylizednerf: consistent 3d scene stylization as stylized

nerf via 2d-3d mutual learning. In CVPR, 2022. 2, 3

[18] Brian Ichter, Edward Schmerling, Tsang-Wei Edward Lee,

and Aleksandra Faust. Learned critical probabilistic

roadmaps for robotic motion planning. In ICRA, 2020. 1

[19] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.

Sdfdiff: Differentiable rendering of signed distance fields for

3d shape optimization. In CVPR, 2020. 2

[20] Carson Katri. Dreamtextures. https://github.com/carson-

katri/dream-textures, 2023. 8

[21] Zhengfei Kuang, Fujun Luan, Sai Bi, Zhixin Shu, Gordon

Wetzstein, and Kalyan Sunkavalli. Palettenerf: Palette-based

appearance editing of neural radiance fields. CVPR, 2022. 1,

2, 3

[22] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Car-

oline Pantofaru, Leonidas J Guibas, Andrea Tagliasacchi,

Frank Dellaert, and Thomas Funkhouser. Panoptic neural

fields: A semantic object-aware neural scene representation.

In CVPR, 2022. 2

[23] Marc Levoy and Pat Hanrahan. Light field rendering. In

SIGGRAPH, 1996. 1

[24] Lei Li, Siyu Zhu, Hongbo Fu, Ping Tan, and Chiew-Lan Tai.

End-to-end learning local multi-view descriptors for 3d point

clouds. In CVPR, 2020. 2

[25] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chong-

hao Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer:

Learning bird’s-eye-view representation from multi-camera

images via spatiotemporal transformers. In ECCV, 2022. 2

[26] Hao-Kang Liu, I Shen, Bing-Yu Chen, et al. Nerf-in:

Free-form nerf inpainting with rgb-d priors. arXiv preprint
arXiv:2206.04901, 2022. 3

[27] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel

Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-

umes: Learning dynamic renderable volumes from images.

ACM TOG, 2019. 2

[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015. 4

[29] Amaury Louarn, Marc Christie, and Fabrice Lamarche. Au-

tomated staging for virtual cinematography. In SIGGRAPH,

2018. 1

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. ECCV, 2021. 1, 2, 3, 4, 7

[31] Ashkan Mirzaei, Tristan Aumentado-Armstrong, Konstanti-

nos G Derpanis, Jonathan Kelly, Marcus A Brubaker, Igor

Gilitschenski, and Alex Levinshtein. Spin-nerf: Multiview

segmentation and perceptual inpainting with neural radiance

fields. CVPR, 2023. 3

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. ACM TOG, 2022. 2, 7

[33] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall,

Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-

nerf: Regularizing neural radiance fields for view synthesis

from sparse inputs. In CVPR, 2022. 2, 4, 7

2886

[34] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-

ing scenes as compositional generative neural feature fields.

In CVPR, 2021. 2, 3

[35] Merlin Nimier-David, Sébastien Speierer, Benoı̂t Ruiz, and

Wenzel Jakob. Radiative backpropagation: an adjoint

method for lightning-fast differentiable rendering. ACM
TOG, 2020. 2

[36] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien

Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo

Martin-Brualla. Nerfies: Deformable neural radiance fields.

In ICCV, 2021. 2

[37] Georgios Pavlakos, Ethan Weber, Matthew Tancik, and

Angjoo Kanazawa. The one where they reconstructed 3d

humans and environments in tv shows. In ECCV, 2022. 2

[38] Stefan Popov, Pablo Bauszat, and Vittorio Ferrari. Corenet:

Coherent 3d scene reconstruction from a single rgb image.

In ECCV, 2020. 2

[39] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and

Francesc Moreno-Noguer. D-nerf: Neural radiance fields for

dynamic scenes. In CVPR, 2021. 2

[40] Johannes L. Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. In CVPR, 2016. 1, 2, 4, 7

[41] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas

Geiger. Graf: Generative radiance fields for 3d-aware image

synthesis. NeurIPS, 2020. 2, 3

[42] Jinglei Shi, Xiaoran Jiang, and Christine Guillemot. Learn-

ing fused pixel and feature-based view reconstructions for

light fields. In CVPR, 2020. 2

[43] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural representa-

tions with periodic activation functions. NeurIPS, 2020. 2,

3, 7

[44] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik

Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl

Ren, Shobhit Verma, et al. The replica dataset: A digital

replica of indoor spaces. arXiv preprint arXiv:1906.05797,

2019. 4, 6

[45] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-

han, Ben Mildenhall, Pratul Srinivasan, Jonathan T. Barron,

and Henrik Kretzschmar. Block-NeRF: Scalable large scene

neural view synthesis. CVPR, 2022. 2

[46] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-

tures let networks learn high frequency functions in low di-

mensional domains. NeurIPS, 2020. 2

[47] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir

Navab. Cnn-slam: Real-time dense monocular slam with

learned depth prediction. In CVPR, 2017. 2

[48] Haithem Turki, Deva Ramanan, and Mahadev Satya-

narayanan. Mega-nerf: Scalable construction of large-scale

nerfs for virtual fly-throughs. In CVPR, 2022. 1, 2

[49] Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer,

Kyle Genova, Mehdi SM Sajjadi, Etienne Pot, Andrea

Tagliasacchi, and Daniel Duckworth. Nesf: Neural semantic

fields for generalizable semantic segmentation of 3d scenes.

TMLR, 2022. 2

[50] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martı́n-Martı́ n,

Cewu Lu, Li Fei-Fei, and Silvio Savarese. Densefusion: 6d

object pose estimation by iterative dense fusion. In CVPR,

2019. 2

[51] Silvan Weder, Guillermo Garcia-Hernando, Á ron Monsz-

part, Marc Pollefeys, Gabriel Brostow, Michael Firman, and

Sara Vicente. Removing objects from NeRFs. In CVPR,

2023. 1

[52] Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno,

Ben Glocker, and Andrew Davison. Elasticfusion: Dense

slam without a pose graph. In Robotics: Science and Sys-
tems, 2015. 2

[53] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,

Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.

Bungeenerf: Progressive neural radiance field for extreme

multi-scale scene rendering. In ECCV, 2022. 2

[54] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han

Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui.

Learning object-compositional neural radiance field for ed-

itable scene rendering. In ICCV, 2021. 1, 2, 3

[55] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,

Rongfei Jia, and Lin Gao. Nerf-editing: geometry editing

of neural radiance fields. In CVPR, 2022. 1, 2

[56] Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas,

and Shuang Zhao. Path-space differentiable rendering. ACM
TOG, 2020. 2

[57] Jiakai Zhang, Xinhang Liu, Xinyi Ye, Fuqiang Zhao, Yan-

shun Zhang, Minye Wu, Yingliang Zhang, Lan Xu, and

Jingyi Yu. Editable free-viewpoint video using a layered neu-

ral representation. ACM TOG, 2021. 2

[58] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-

drew J Davison. In-place scene labelling and understanding

with implicit scene representation. In ICCV, 2021. 2, 7

[59] Michael Zollhöfer, Patrick Stotko, Andreas Görlitz, Chris-

tian Theobalt, Matthias Nießner, Reinhard Klein, and An-

dreas Kolb. State of the art on 3d reconstruction with rgb-d

cameras. In Comput. Graph. Forum, 2018. 2

2887

