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Abstract

Pose-conditioned convolutional generative models
struggle with high-quality 3D-consistent image generation
from single-view datasets, due to their lack of sufficient
3D priors. Recently, the integration of Neural Radiance
Fields (NeRFs) and generative models, such as Generative
Adversarial Networks (GANs), has transformed 3D-aware
generation from single-view images. NeRF-GANs exploit
the strong inductive bias of neural 3D representations and
volumetric rendering at the cost of higher computational
complexity. This study aims at revisiting pose-conditioned
2D GANs for efficient 3D-aware generation at inference
time by distilling 3D knowledge from pretrained NeRF-
GANs. We propose a simple and effective method, based on
re-using the well-disentangled latent space of a pre-trained
NeRF-GAN in a pose-conditioned convolutional network
to directly generate 3D-consistent images corresponding
to the underlying 3D representations. Experiments on
several datasets demonstrate that the proposed method
obtains results comparable with volumetric rendering in
terms of quality and 3D consistency while benefiting from
the computational advantage of convolutional networks.
The code is available at: https://github.com/
mshahbazi72/NeRF-GAN-Distillation

1. Introduction

Generative Adversarial Networks (GANs) [14] have un-
dergone outstanding progress in photo-realistic image gen-
eration and manipulation in a variety of applications [3, 26,
39, 21, 22, 8, 43, 42]. Recently, there has been an increasing
interest in extending GANs to the task of 3D-aware genera-
tion from single-view image datasets, with the goal of pro-
viding disentangled control over the content and the view-
point of the generated images.

Volumetric Rendering (EG3D)

Our Convolutional Rendering

Batch Size

Batch Size

Figure 1. Top: views of the same subject cat generated by a volu-
metric rendering generator (EG3D) and by our convolutional gen-
erator. Bottom: comparison of the inference memory consumption
and speed (on a fixed GPU budget) for the two methods.
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Image GAN models have been historically based on con-
volutional architectures, enabling efficient training and gen-
eration for 2D tasks. However, pose-conditioned convolu-
tional GANs (pcGANs) struggle with 3D-consistent image
generation, due to their lack of sufficient 3D priors [34].
Therefore, some studies have previously attempted to disen-
tangle the pose from the content in pcGANs using explicit
3D supervision [50, 27, 11], which, however, is not read-
ily available for most datasets. As a result, later methods
moved away from fully convolutional GANs by incorpo-
rating 3D inductive biases in the architecture and training
pipeline, such as 3D neural representations and differen-
tiable rendering methods [34, 35, 46, 38].

The advent of Neural Radiance Fields (NeRFs) [30] has
recently transformed the neural 3D representation and the
task of novel-view synthesis [1, 2, 41, 31, 29, 16, 54]. For
this reason, NeRFs have been successfully integrated with
GANs to achieve promising results in 3D-aware genera-
tion [44, 5, 37, 15, 48, 36, 45]. Nerf-GANs, in their general
form, map a latent space to a 3D representation of objects
and generate images from queried viewpoints using volu-
metric rendering. However, volumetric rendering is compu-
tationally demanding due to its ray-casting process, making
high-resolution generation slow and memory-expensive.
Recent works have proposed different approaches to im-
prove the computational efficiency of NeRF-GANs using
more efficient 3D representations [36, 5, 45] and training
protocols [5, 37]. Nevertheless, volumetric rendering re-
mains an integral part of these models.

In recent NeRF-GANs [36, 5, 45, 37], convolutional net-
works have been reintroduced in the generator architecture
as super-resolution networks or as 3D-representation gener-
ators, in order to scale up NeRF-GANs for high-resolution
generation. In this study, we take a different approach to
integrating NeRF-GANs and convolutional GANs for 3D-
aware generation from single-view images. In particular,
we investigate the capacity of convolutional generators to
achieve 3D-consistent rendering with explicit pose control
when learning from a pretrained NeRF-GAN without any
additional explicit 3D supervision. A convolutional gener-
ator that fairly preserves the 3D consistency, image quality,
and the correspondence between the generated images and
the underlying 3D representation can be used for efficient
multi-view inference in setups where volumetric rendering
is not affordable, such as in mobile applications. However,
balancing and minimizing the trade-off between efficiency
and 3D consistency is a highly challenging task, which we
set out to explore in this work.

We propose a simple but effective method for distilling
a pretrained NeRF-GAN into a pose-conditioned fully con-
volutional generator. The main component of our approach
is based on exploiting the well-disentangled intermediate
latent space of the NeRF-GAN in the convolutional gen-

erator. In particular, our convolutional generator learns to
map each latent code from the 3D generator, along with
the target viewpoint, to the corresponding obtained images
by explicit volumetric rendering. By doing so, we aim to
distill the NeRF-GAN’s underlying 3D knowledge into the
convolutional generator, as well as to establish a correspon-
dence between the images of the generator and the 3D rep-
resentation of the NeRF-GAN. As demonstrated in Fig. 1,
our experiments on three different datasets indicate that the
convolutional generator trained with our method is capable
of achieving results comparable to volumetric rendering in
terms of image quality and 3D-consistency, while benefiting
from the superior efficiency of convolutional networks.

Our contributions are summarized as follows:

• We propose a method to distill NeRF-GANs into con-
volutional generators for efficient 3D-aware inference.

• We provide a simple and effective method to condition
the convolutional generator on the well-disentangled
intermediate latent space of the NeRF-GAN.

• Through experiments on three different datasets, we
show that the generator trained by our distillation
method well preserves the 3D consistency, image qual-
ity, and semantics of the pretrained NeRF-GAN.

2. Related Works
3D-aware Generation from Single-View Images. Prior
works have attempted to create 3D awareness in 2D GANs
using explicit 3D supervision, such as 3D models [50, 11],
pose and landmark annotations [47, 20], and synthetic
data [27]. In many applications, obtaining such 3D super-
vision is not practical. As a result, later works aimed at
unsupervised methods by introducing 3D inductive biases
in GANs, including 3D neural representations and differen-
tiable rendering [34, 38, 46, 35]. These methods, although
promising, lag far behind 2D GANs in terms of image qual-
ity or struggle with high-resolution generation due to the
additional computational complexity.
NeRF-GANs. NeRFs have shown outstanding potential in
compactly representing 3D scenes for novel view synthe-
sis. GRAF [44] and Pi-GAN [5] are the first works to in-
tegrate NeRFs and GANs. While achieving highly consis-
tent 3D-aware generation, the computational restrictions of
NeRF framework make these methods impractical for high-
resolution generation or environments with constrained re-
sources. In order to extend NeRF-GANs to higher reso-
lutions, convolutional super-resolution networks were used
in later studies [36, 15, 37] at the expense of some multi-
view inconsistencies. EpiGRAF [48], in contrast, adopts
an efficient multi-scale patch training protocol, but still
requires full high-resolution sampling rendering for infer-
ence, which makes it comparatively more computationally
demanding than competitors.
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Other studies aim at bringing the recent advances in the
efficiency of NeRFs to NeRF-GANs. Although there exist
numerous works on efficient 3D representations [32, 41, 49,
7, 53, 52] and volumetric sampling [55, 13, 17, 33, 19] in
NeRFs, only a subset of them [4, 45, 56] have been suc-
cessfully applied to NeRF-GANs. This is because they are
mainly designed for the single-scene setup, making their
adaptation to the generative setup not trivial. The use of
sparse voxel grids in VoxGRAF [45] and multi-plane image
representations in [56] result in efficient and 3D-consistent
generation while compromising the image quality and 3D
geometry. EG3D [4] proposes using tri-planes to repre-
sent the geometry of the generated objects. Exploiting tri-
planes, coupled with carefully designed techniques to en-
force 3D consistency, allows EG3D to significantly improve
both computational efficiency and image quality. Live 3D
Portrait [51] is a concurrent work based on EG3D that aims
at real-time one-shot reconstruction of faces by estimat-
ing the canonical tri-planes of a pre-trained EG3D. How-
ever, Live 3D Portrait is computationally limited by the
underlying volumetric rendering of EG3D. Most similar to
our study, SURF-GAN [28] aims to discover directions for
pose control in a pretraind 2D GAN by generating multi-
view images using a pretrained NeRF-GAN. However, us-
ing NeRF-GANs only as multi-view supervision does not
fully exploit their underlying 3D knowledge. Moreover, the
2D generator obtained using this method does not preserve
any correspondence between the NeRF-GAN’s 3D repre-
sentations and the generated images. Different from SURF-
GAN, we exploit the intermediate latent space of retrained
NeRF-GANs to distill 3D knowledge into a 2D genera-
tor and establish correspondence between the convolutional
generator and the NeRF-GAN’s 3D representations.

3. Method
In this section, we first provide a brief overview of the

formulation of NeRF-GANs and then explain the proposed
formulation in detail.

3.1. Preliminaries

The general formulation of NeRF-GANs consists of a
3D-representation generator G3D(z), which maps a latent
variable z (usually drawn from a normal distribution) to a
3D representation of an object. Then, in order to render an
image Iz,c from the target viewpoint (camera parameters)
c ∈ R25, volumetric rendering is applied to the generated
3D representation. We base our method on EG3D [4], as it
provides a strong trade-off in image quality, 3D consistency,
and efficiency, among recent NeRF-GANs.

EG3D represents 3D scenes using tri-planes, which are
three axis-aligned orthogonal feature planes, each with a
size of N×N×C, where N is spatial resolution and C is the
number of channels. To represent a 3D position x ∈ R3, x

is projected onto each of the three feature planes, retrieving
the corresponding feature vector (Fxy, Fxz, Fyz) via bilin-
ear interpolation, and aggregating the three feature vectors
via summation. To obtain the color and density at position
x, a lightweight MLP decodes the feature vector obtained
for the queried position to a density and color value.

The tri-plane generator G3D(z, c) in EG3D consists of
a mapping network M3D(z, c), which maps the input la-
tent code and the target viewpoint to an intermediate la-
tent variable w, namely the style code. The style code
then is used to modulate a convolutional synthesis network
S3D(w) to generate the tri-planes I3pz,c. In order to render
an image Iz,c from the target viewpoint c, hierarchical vol-
umetric rendering is applied to the tri-planes. Since volu-
metric rendering at high resolutions is computationally too
expensive, EG3D does so at a lower resolution and uses a
convolutional super-resolution network to obtain a final im-
age. More specifically, the low-resolution output of vol-
umetric rendering in EG3D consists of a 32-channel fea-
ture map Ifz,c, the first three of which represent the low-
resolution RGB image ILR

z,c ), which is given as input to the
super-resolution network. EG3D is trained in an adversarial
fashion with a viewpoint-conditioned dual discriminator D
that ensures the photorealism of the generated images from
the target viewpoints, as well as the consistency between
high-resolution and low-resolution images.

3.2. Convolutional Rendering of Pretrained NeRF-
GANs

The aim of the proposed method is to distill a pre-trained
NeRF-GAN G3D

z,c into a 2D image generator G2D
z,c , such

that G2D
z,c directly predicts 3D-consistent multi-view images

I ′z,c, corresponding to the volumetric renderings obtained
by the underlying 3D representation of G3D

z,c . To this end,
we propose to exploit the well-disentangled style space of
G3D to distill the underlying 3D representation into G2D.
Sharing the style space w of the pre-trained 3D generator
with the convolutional renderer is the first step towards es-
tablishing a correspondence between the 3D representations
and the generated images. Secondly, it allows training the
convolutional generator for 3D-consistent generation with-
out the need for generating multiple views of the same ob-
jects and enforcing multi-view consistency.

The overall architecture of EG3D and our convolutional
generator is visualized in 2. The convolutional generator
is based on StyleGAN architecture [23, 24], consisting of
a mapping network, a low-resolution convolutional feature
prediction, and a convolutional super-resolution network.
The mapping network transforms the style code w of G3D,
and the target viewpoint c to the style code w′ of G2D.
Then, the low-resolution feature predictor S2D estimates
the EG3D features and low-resolution image obtained by
the volumetric rendering. Estimated features and images are
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Figure 2. Using a student-teacher framework, we distill 3D consistency from a frozen volumetric rendering based Nerf-GAN (top) to a 2D
convolutional renderer (bottom). A loss consisting of high- and low-resolution image reconstruction and an adversarial component allows
us to retain good image quality and 3D consistency.

then mapped to the high-resolution outputs using the super-
resolution network. In our setup, the super-resolution net-
work is initialized with EG3D’s super-resolution network
and is jointly optimized with the feature predictor network.

3.3. Training

In order to train the proposed convolutional renderer,
we use a teacher-student framework, where the volumet-
ric rendering is used to supervise G2D on the viewpoint-
conditioned mapping of (z, c) to I ′z,c. A schematic repre-
sentation of our training regime is reported in Fig. 2. Specif-
ically, for each training sample, we randomly sample zi and
ci and use the pretrained NeRF-GAN to obtain: the corre-
sponding style code wi, the low-resolution image ILR

zi,ci , fea-
ture maps Ifzi,ci rendered by volumetric rendering, as well
as, the high-resolution image IHR

zi,ci generated by the super-
resolution network. These together form a training sample
i for the proposed convolutional renderer.

We provide z and c to G2D and compute a loss function
composed of three parts. We first add a reconstruction term
LLR
rec between the low-resolution outputs of the volumetric

and convolutional renderers. A second reconstruction loss
LHR
rec is applied between the super-resolved outputs of the

two renderers. Lastly, we apply an adversarial term Ladv .
In the following, we drop the subscripts zi, ci to reduce

the clutter in notation. The low-resolution reconstruction
loss LLR

rec consists of a pixel-wise smooth L1 loss between
the two feature maps, as well as a perceptual loss between
the generated and target low-resolution images,

LLR
rec =λLR

L1 ∗ SmoothL1(I ′f , If )+

λLR
perc ∗ PerceptualLoss(I ′LR, ILR).

(1)

Here, λLR
L1 and λLR

perc are the weights for the low-resolution
smooth L1 and perceptual loss, respectively.

Similarly, the high-resolution reconstruction loss LHR
rec is

defined as:

LHR
rec =λHR

L1 ∗ SmoothL1(I ′f , If )+

λHR
perc ∗ PerceptualLoss(I ′HR, IHR).

(2)

where λHR
L1 and λHR

perc are the weights for the high-
resolution smooth L1 and perceptual loss, respectively.

The adversarial term Ladv is similar to the one used in
EG3D. We use the same dual-discriminator architecture D
as in EG3D to ensure the realism of the high-resolution
images, their consistency with the low-resolution version,
and the compliance of the generated image with the queried
viewpoints. The total loss Ltotal for training G2D is,

Ltotal = LLR
rec + LHR

rec + λadv ∗ Ladv, (3)

where λadv is the weight for the adversarial loss.
Two-stage training: in practice, empirical experiments

show that training the convolutional renderer using the full
objective from the beginning will lead to high-quality but
3D-inconsistent images. Therefore, we instead propose a
2-stage training curriculum. In the first stage, G2D is only
optimized by pure distillation of the volumetric rendering
G3D using LLR

rec and LHR
rec until the renderer achieves rea-

sonable generation quality. Then, the adversarial loss Ladv

is added to the training to further improve the performance.
By applying this 2-stage curriculum, we are able to counter
the 3D inconsistency induced by the adversarial training.

Pose-correlated dataset bias: As shown in EG3D [4],
adversarial training of the convolutional network is prone to
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learning pose-correlated dataset biases, such as more smil-
ing in non-frontal viewpoints in FFHQ dataset [25], which
in turn results in 3D attribute inconsistencies. To mitigate
such biases in FFHQ dataset, we use both real images and
the images rendered from EG3D as the real examples shown
to the discriminator. The proportion of the EG3D-rendered
images shown to D is controlled by the hyper-parameter
α (0 ≤ α ≤ 1), which is set to 0.5 in our experiments. As
we will discuss in section 4.6, α can be used to control the
trade-off between image quality and 3D consistency.

4. Experiments
In this section, we first describe our experimental setup

for the evaluation of our method. Then, we compare the
proposed method with baselines in terms of visual quality,
3D consistency, and computational efficiency. Moreover,
we provide an ablation study and a discussion on the bene-
fits and trade-offs of the proposed method.

4.1. Datasets

Following EG3D [5], we evaluate our method on three
different datasets:
Flickr-Faces-HQ (FFHQ) [25]: a collection of 70k high-
quality images of real-world human faces, as well as corre-
sponding approximate camera extrinsics estimated using an
off-the-shelf pose estimator.
AFHQ Cats: a sub-category of the Animal-Face-HQ
(AFHQ) [9], consisting of around 5k high-quality images
of cat faces, as well as corresponding camera extrinsics es-
timated using an off-the-shelf pose estimator.
ShapeNet Cars: a category of ShapeNet [6] consisting of
synthetic images of cars rendered from different viewpoints,
as well as the corresponding camera extrinsics annotations.

4.2. Baselines

We consider EG3D [4] and the method proposed in
SURF-GAN [28] as our main baselines for this study. For a
more complete evaluation, we also compare our method to
additional relevant baselines:
EG3D [4]: the NeRF-GAN used for distilling 3D knowl-
edge in the convolutional generator. EG3D serves as the up-
per bound for the 3D consistency of the proposed method.
Pose-Conditioned StyleGAN (PC-GAN): a standard con-
ditional 2D GAN, conditioned on the pose annotations with-
out any knowledge distillation.
SURF: Inspired by the proposed method in SURF-
GAN [28], we create a baseline called SURF, where multi-
view images of EG3D are used to discover pose-control in
a pre-trained 2D StyleGAN.
LiftGAN [46]: a method predating EG3D and SURF base-
lines based on differentiable rendering that distills a 2D
GAN in order to train a 3D generator.

4.3. Implementation and Evaluation Details

We implement and evaluate the proposed generator us-
ing both StyleGAN2 (ST2) [23] and StyleGAN3 (ST3) [24]
architectures. For the pretrained NeRF-GAN, we use the
official models from EG3D [4] (for Shapenet Cars, we re-
train the model as the official model does not match the re-
sults reported by EG3D). We train our experiments using
a batch size of 16. The rendering resolution and the final
resolution are (128, 512) for FFHQ and AFHQ and (64,
128) for Shapenet Cars. Both training and inference exper-
iments were conducted using NVidia RTX 3090 GPUs. In
all experiments, we set all of the weights of reconstruction
loss terms (λLR

L1 , λLR
perc, λHR

L1 , λHR
perc) to the value 1 and the

weight of the adversarial loss (λadv) to the value 0.1.

4.4. Metrics

We evaluate our method quantitatively in terms of visual
quality, and 3D consistency.
Fréchet Inception Distance (FID) [18]: The most com-
mon metric to assess the quality and diversity of generation.
Kernel Inception Distance (KID) [18]: An unbiased alter-
native to FID for smaller datasets.
Pose Accuracy (PA): following previous works [4], we
measure the ability of the model in generating images of the
query poses by calculating the mean squared error (MSE)
between the query poses and the pose of the generated im-
ages, estimated using an off-the-shelf pose estimator [12].
Identity Preservation (ID): As a metric for 3D consistency,
we measure the degree of face identity preservation between
different viewpoints with respect to the canonical pose us-
ing ArcFace [10] cosine similarity for the FFHQ setup.
3D Landmark Consistency: As another 3D consistency
metric, we measure the change in facial landmarks between
different viewpoints in FFHQ using MSE. The 3D land-
marks are estimated using an off-the-shelf estimator [12].

4.5. Quantitative Comparison

In the following, we quantitatively compare the proposed
method with the baselines described in Sec. 4.2 in terms of
inference efficiency, visual quality, and 3D consistency.

4.5.1 Efficiency

The efficiency of fully-convolutional networks compared to
the rendering-based methods is well-known. To better as-
sess the practical benefit of the proposed method, we pro-
vide a comparison of inference efficiency between EG3D.
Fig 1 visualizes an example of the inference memory con-
sumption and speed of the two methods using different
batch sizes on a fixed GPU budget (in this case, on RTX
3090 GPU with 24G of memory). As shown, EG3D is re-
stricted to small batch sizes (a maximum of 14) due to its
costly memory consumption, where our method can scale
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Table 1. Comparison of image quality on three datasets in terms of
FID and KID metrics. *The value is borrowed from [46].

Method FFHQ AFHQ ShapeNET Cars
FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓

EG3D [4] 5.0 0.0018 2.9 0.0003 3.5 0.0017

PC-GAN 19.3 0.0085 4.5 0.0009 6.1 0.0018
LiftGAN [46] 29.8* - - - - -
SURF 31.1 0.0153 - - - -
Ours (ST2) 6.6 0.0019 3.8 0.0011 3.1 0.0013
Ours (ST3) 6.8 0.0023 3.2 0.0007 3.1 0.0012

Table 2. Comparison of 3D consistency metrics on FFHQ.
Method Pose Acc. ↓ 3D Landmark ↓ ID ↑
EG3D [4] 0.002 0.018 0.75

PC-GAN 0.009 0.062 0.56
SURF 0.044 0.014 0.86
Ours (ST2) 0.002 0.023 0.75
Ours (ST3) 0.002 0.022 0.75

up to a maximum of 96 samples per batch (∼ 7×). As for
the speed, our generator achieves a better frame-per-second,
especially when using StyleGAN2 as its backbone (> 3×).

4.5.2 Image Quality

To assess the trade-off brought about by our convolutional
generator, we evaluate the quality of the generated images.
Table 1 shows the FID and KID scores for our method and
the baseliness on different datasets. Compared to the PC-
GAN and SURF baselines, our method constantly achieves
higher quality. This confirms that exploiting the style space
of the pretrained NeRF-GAN contributes to the ability of
the convolutional renderer in pose-conditioned generation.
Although our method does not fully match the visual quality
of EG3D, it is still able to fairly maintain high image qual-
ity and significantly reduce the compromise in the quality
compared to the other convolutional counterparts.

4.5.3 3D Consistency

While, unlike volumetric rendering, 2D convolutions do
not guarantee 3D consistency, we show that our approach
achieves a good performance in this regard. We assess the
3D consistency of generated images on FFHQ by measur-
ing the pose accuracy, 3D landmark consistency, and face
identity preservation, as discussed in Sec. 4.4, which are
provided in Table 2. Based on the results, Our method
achieves comparable 3D consistency with EG3D, while PC-
GAN and SURF struggle. Note that the high values for
identity preservation and 3D landmark consistency in SURF
are due to the limited pose variations, and hence generating
similar images regardless of the input pose, as reflected by
the pose accuracy (and the visual examples in Fig. 3).

4.6. Ablation

Ablation on loss functions: the proposed training objective
in section 3.3 consists of different loss terms to ensure both
image quality and consistency with the output of volumetric
rendering. In this section, we ablate the importance of these
components. Table 3 shows the FID scores for the following
experiments on the loss terms on AFHQ dataset:

• LR: only the low-resolution reconstruction loss. the
super-resolution network is frozen.

• HR: only the high-resolution reconstruction loss.
• LR + HR both low-resolution and high-resolution re-

construction losses.
• HR + ADV: reconstruction and adversarial losses on

the high-resolution images.
• Full (LR + HR + ADV) full training objective, includ-

ing the reconstruction and adversarial terms.

As shown by the ablation study, the combination of all the
proposed loss terms leads to the best FID scores.
Single-stage v.s. two-stage training: As mentioned in 3.3,
we find out that single-stage training by jointly optimizing
for both reconstruction and adversarial losses results in sub-
tle inconsistencies such as color shifts and geometry warps,
which can be mitigated using the proposed 2-stage training
in section 3. As the observed inconsistencies are difficult
to capture using our quantitative 3D consistency metrics,
we provide a visual comparison between the examples of
single-stage and two-stage training on AFHQ in Fig. 6.
Mitigating Pose-Attribute Correlation: In Table 4, we
provide an ablation on the parameter α introduced in sec-
tion 3.3 for FFHQ dataset. As shown, including EG3D-
generated images (α > 0) improves the 3D consistency at
the cost of a lower generation quality.

Table 3. Ablation on different loss functions for training the ST3
convolutional renderer on AFHQ Cats dataset.

Method FID ↓
LR 30.55
HR 10.39
LR + HR 9.1
HR + ADV 6.58
Full (LR + HR + ADV) 3.2

Table 4. The effect of mixing real images and EG3D-rendered im-
ages as real examples for adversarial training, controlled by the
parameter α, on FFHQ dataset.

Method Ours (ST2) Ours (ST3)
FID ↓ 3D Landmark ↓ FID ↓ 3D Landmark ↓

α = 0 5.5 0.027 5.7 0.027
α = 0.3 6.3 0.023 6.1 0.024
α = 0.5 6.8 0.022 6.6 0.023
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Figure 3. Qualitative examples of variations in yaw and pitch for FFHQ. Compared to the pose-conditioned GAN and SURF baseline, our
proposed method nearly matches the 3D consistency and image quality of volumetric rendering (EG3D).
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Figure 4. Qualitative examples of yaw and pitch variations for AFHQ cats. In line with our quantitative experiments, the pose-conditioned
convolutional baseline (PC-GAN) fails to preserve the identity of the subject under different poses. In contrast, our method exhibits similar
preservation of identity to the volume rendering approach (EG3D), despite the difference in computational resources and time.

4.7. Qualitative Comparison

In this section, We provide a visual comparison of our
method with the baselines. In Fig. 3 and 4, we provide
visual examples of variations in yaw and pitch for FFHQ

and AFHQ Cats. Compared to a PC-GAN and SURF, our
proposed method closely matches the 3D consistency and
maintains the image quality of volumetric rendering. Fig. 5
additionally provides examples of Shapenet Cars gener-
ated using our method and their corresponding images from
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Figure 5. Qualitative examples of different camera poses in Shapenet Cars for three different car models.
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Figure 7. First row: Inversion using PTI [40]) for EG3D and
our method; second row: interpolation in the latent space of our
method; third row: style mixing in the latent space of our method.

EG3D. Similarly, our method exhibits preservation of 3D
consistency and image quality, despite the difference in re-
quired computational resources.

4.8. Inversion, Interpolation, and Style Mixing

As the proposed generator follows a StyleGAN archi-
tecture, it can easily benefit from most of the editing tech-
niques common in the GANs’ literature. Fig. 7 shows exam-
ples of inversion using Pivotal Tuning Inversion (PTI) [40],
latent space interpolation, and style mixing.

4.9. Discussion: StyleGAN2 V.S. StyleGAN3

StyleGAN2 is more computationally efficient than Style-
GAN3. Based on the provided quantitative evaluations,
our method reaches comparable image quality and 3D con-
sistency with both architectures. However, StyleGAN2
is known to suffer from more texture stitching and arti-
facts [24], which we also observe in the generated images.

4.10. Correspondence between Convolutional and
Volumetric Renderering

As mentioned before, exploiting the style space of the
pretrained NeRF-GAN also provides an opportunity for es-
tablishing a direct correspondence between the 3D repre-
sentation of the 3D generator and the generated images us-
ing the convolutional generator. A close comparison of im-
ages generated using the convolutional and volumetric ren-
dering in Figures 3, 4, and, 5 indicates that the convo-
lutional render is able to infer and match many attributes
of the underlying 3D representation from the shared latent
space and generate images similar in content to those of vol-
umetric rendering. However, there still remains a gap in the
full correspondence of the two rendering methods, as se-
mantic and identity changes are visible between the corre-
sponding images generated by the two methods. Investigat-
ing more explicit approaches for enforcing correspondence
could be an interesting direction for improving the convolu-
tional rendering for NeRF-GAN models.

5. Conclusion

We presented a method to distill a pretrained NeRF-
GAN into a pose-conditioned convolutional generator. The
proposed method enables considerably higher efficiency,
which is crucial if 3D neural rendering is to become ubiqui-
tous and deployed at scale. To do so, we proposed exploit-
ing the intermediate latent space of the pretrained NeRF-
GAN as a conditioning input of the convolutional genera-
tor. We additionally provided a training protocol to further
improve the visual quality and 3D consistency of the im-
ages generated using our generator. Through our experi-
ments, we showed that our method maintains good image
quality and 3D consistency, significantly better than previ-
ous existing fully-convolutional methods and approaching
that of the baseline NeRF-GAN with volumetric rendering.
Finally, while our method takes steps toward achieving full
correspondence between the two rendering methods, there
remains a gap in terms of image semantics. Improving this
aspect remains a subject for further research.
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