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Abstract

3D GANs have the ability to generate latent codes for
entire 3D volumes rather than only 2D images. These mod-
els offer desirable features like high-quality geometry and
multi-view consistency, but, unlike their 2D counterparts,
complex semantic image editing tasks for 3D GANs have
only been partially explored. To address this problem, we
propose LatentSwap3D, a semantic edit approach based
on latent space discovery that can be used with any off-
the-shelf 3D or 2D GAN model and on any dataset. La-
tentSwap3D relies on identifying the latent code dimensions
corresponding to specific attributes by feature ranking us-
ing a random forest classifier. It then performs the edit
by swapping the selected dimensions of the image being
edited with the ones from an automatically selected refer-
ence image. Compared to other latent space control-based
edit methods, which were mainly designed for 2D GANs,
our method on 3D GANs provides remarkably consistent se-
mantic edits in a disentangled manner and outperforms oth-
ers both qualitatively and quantitatively. We show results on
seven 3D GANs (π-GAN, GIRAFFE, StyleSDF, MVCGAN,
EG3D, StyleNeRF, and VolumeGAN) and on five datasets
(FFHQ, AFHQ, Cats, MetFaces, and CompCars).

1. Introduction

3D Generative Adversarial Networks (3D GANs) have

broad applications in fields like computer graphics and aug-

mented and virtual reality (AR/VR) thanks to their abil-

ity to synthesize photorealistic images with explicit camera

pose control. 3D GANs could provide greater control over

the subject to be edited by ensuring multi-view consistency

when combined with semantic attribute editing. Such capa-

bilities empower various applications ranging from realis-

tic virtual try-on, and virtual product placement in movies

or video games, to architectural design. For instance, they

can enable changing hair color, wearing eyeglasses, and

smiling in the case of face generation or changing fur color
and/or breed type in the context of animal generation.

†Conducted this research as part of studies at TUM.
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Figure 1: Our method (LatentSwap3D) inverts a given im-

age in the latent space of a pre-trained MVCGAN [74] on

FFHQ [25] while enabling novel view synthesis. Rows two

and three show a comparison on attribute editing (e.g., smil-

ing) between StyleFlow [2] and ours on a real face.

Existing image editing methods have primarily focused

on 2D GANs, and they provide robust control over attributes

by manipulating latent spaces [21, 39, 49, 50, 70]. However,

current editing methods for 3D GANs are: limited to edit-

ing pose, expression, and illumination [14, 32, 34, 57–60],

require training of the generator from scratch [9, 13, 14, 22,

28, 34, 52, 55, 56, 58] or require additional semantic seg-

mentation maps as conditioning [9, 13, 22, 55, 56]. There-

fore, exploring and controlling semantic attributes on la-

tent spaces of any pre-trained 3D GANs for attribute edit-

ing without the need to re-train or fine-tune the generator
remains an open research question. Although 2D editing

methods may be effective for certain 3D GANs that inherit

the latent space of StyleGAN, noticeably EG3D [6], they

often lead to undesirable artifacts for other 3D GANs as

shown in Fig. 1. We argue that semantic attribute edit-

ing should perform as effectively on any 3D GAN model

even if it does not inherit StyleGAN latent space (e.g.,

GRAF, GIRAFFE, π-GAN, MVCGAN, StyleSDF, and Vol-

umeGAN) [7, 36, 37, 47, 66, 74].

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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This work proposes a method to achieve multi-view con-

sistent attribute editing on any pre-trained 3D GAN, i.e.,

whether or not inheriting StyleGAN-based latent spaces.

Our approach first explores 3D GANs’ latent spaces. Then,

it identifies latent dimensions that strongly correlate with

the desired attribute. Finally, it performs edits by swapping

the identified codes with the corresponding codes from the

automatically selected reference subject already possessing

the desired attribute. Unlike linear operations or predicting

the edited latent codes, our proposed swapping method en-

sures that the edited latent codes remain within the range of

valid values expected by the generative model.

Like their 2D counterparts, 3D GANs expose various la-

tent spaces that control image generation. Therefore, as a

preliminary step to enable attribute edits, we find the most

suitable latent space by measuring disentanglement, com-

pleteness, and informativeness (DCI) metrics, as proposed

in [15] and firstly used in [63] to assess the quality of la-

tent spaces of generative models. To identify which dimen-

sions in the latent space control the presence or absence

of a specific attribute, we employ a method that involves

training a random forest [4] with latent codes to perform

regression for the presence or absence of the desired at-

tribute. The learned random forest provides a ranking of

each feature based on its influence on the output label, al-

lowing us to determine which dimension(s) have greater

control over the specific edit. Having identified the rele-

vant dimensions, the method performs the desired transfor-

mation by swapping the top-K most essential dimensions

with the corresponding dimensions from a reference im-

age that exhibits the desired attribute. This explains why

our method is dubbed LatentSwap3D. After showing how

the number K of swapped dimensions controls the inten-

sity of the transformation, we propose a method to auto-

matically tune K on a per-sample basis to apply the edit

without excessively altering the input image, e.g., preserv-

ing the identity of the face. The project page can be found

at https://enisimsar.github.io/latentswap3d/ . Our contribu-

tions can be summarized as follows:

• We explore 3D GAN latent spaces to determine their

ability to encode semantic attributes in terms of disen-

tanglement, completeness, and informativeness (DCI).

• We propose LatentSwap3D enabling attribute editing

tasks for any pre-trained 2D or 3D generative model

without the need to re-train or fine-tune the generators.

LatentSwap3D has state-of-the-art results in terms of

semantic correctness by preserving identity.

• We first show results for attribute editing of generated

images from random seeds of the 3D generators, then

we broaden the capabilities of LatentSwap3D to edit

the attributes of real images by GAN inversion.

We test our method by applying the most popular and

state-of-the-art generators: π-GAN [7], MVCGAN [74],

EG3D [6], StyleSDF [37], GIRAFFE [36], StyleNeRF [17],

VolumeGAN [66], and StyleGAN2 [25], trained on five

public datasets: FFHQ [25], CelebA [33], AFHQ [10],

CompCars [68], and MetFaces [23]. The main paper fo-

cuses on the editing results for π-GAN, MVCGAN and

EG3D in the FFHQ, CelebA and AFHQ datasets.

2. Related Work
Image editing in GANs. StyleGAN generators [24–26]

are widely used to generate high-quality images by con-

verting a random noise vector into a latent code that can

encode semantically meaningful attributes [53, 63]. Image

editing can then be implemented as manipulations of those

latent codes, either supervised [2, 16, 19, 49, 51] or unsu-

pervised [39, 50, 62, 70]. Supervised methods are based on

annotated labels or pre-trained attribute classifiers to pre-

dict the presence of semantic attributes. InterFaceGAN [49]

learns hyperplanes in latent space, whereas StyleFlow [2]

employs conditional normalizing flows. Unsupervised ap-

proaches, instead, do not require pre-trained classifiers or

labels. Semantic Factorization (SeFa) [50] finds semantic

directions by retrieving eigenvectors from a projection ma-

trix by singular value decomposition, while LatentCLR [70]

uses a contrastive learning-based method to learn directions.

Such editing methods are developed primarily for Style-

GAN, which has special linearly editable latent spaces [63].

However, many 3D GANs [7,36,37,66,74] use a non-linear

style integration unit [42], making direct 2D editing meth-

ods ineffective and causing unwanted effects such as iden-

tity change, degenerate facial attributes, and entangled ed-

its. In this work, we propose a generalizable semantic edit-

ing method that can be used with any 3D or 2D GAN model.

3D GANs. Recent advancements in combining NeRF with

GAN have led to the development of 3D GANs [7, 17, 38,

47, 65, 74] that allow explicit control over the pose of the

object being generated. There are two trends for the 3D

GAN architectures: (i) one-staged: use pure volumet-

ric rendering in the generator and (ii) two-staged: use a

combination of low-resolution volumetric rendering and 2D

GANs to increase the output resolution. GRAF [47] and π-

GAN [7] are one-stage generators that provide 3D-aware

image and geometry generation using an implicit neural

rendering but cannot afford high resolution while training.

Two-stage generators [6, 17, 36, 37, 74], include StyleN-

eRF [17] and MVCGAN [74], which use NeRF-based 3D

renderers, and StyleSDF [37], which employs Signed Dis-

tance Fields (SDF)-based 3D renderers as the first stage.

Additionally, EG3D [6] introduces a hybrid explicit and im-

plicit 3D representation through a tri-plane. Our work pro-

poses an edit method that can be used with any of these

models off-the-shelf without additional GAN training.
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3D appearance & shape edits. Existing research on at-

tribute editing methods for 3D shapes and appearances fo-

cuses mainly on learning an edit during the training phase.

3D face generation methods [28–30,32,34,52,58,59,71] of-

ten enable explicit control over attributes. However, some

of those methods [14, 32, 34, 57–60] are limited to edit-

ing only pose, expression, and illumination, while oth-

ers [28,52,71] use a set of predefined labels or losses during

the training process, limiting controllability during genera-

tion. One of them, CONFIG [28], is trained on real and

synthetic data with predefined attributes from scratch to en-

able semantic editing. Alternatively, [9, 13, 22, 55, 56] pro-

pose 3D generators that enable portrait image editing by

utilizing semantic maps. However, they also require re-

training of the generators from scratch. [31] showed high-

quality and disentangled edits, such as gender, and age,

using StyleFlow [2] on pre-trained EG3D [6]. However,

we will show how StyleFlow underperforms for other at-

tributes and on other 3D GANs. Most of the methods above

have a restricted focus, as they can only manipulate the at-

tributes of portrait images and cannot be applied to other

datasets [10, 68, 73]. Furthermore, these methods are not

architecture agnostic and apply attribute editing as one of

the tasks optimized during the training phase [28, 52]. Our

method instead enables attribute editing on any generator

without requiring GAN training and on any dataset, such as

human faces, animals, or cars, as we show in experiments.

Image inversion for generative models. Editing on real

images is possible by obtaining the latent code for an in-

put image by GAN inversion. There are different inver-

sion approaches, from learning-based by using encoder net-

works [41, 45, 61] to optimization-based [1, 76] or hybrid

[3, 75]. Several 3D-GAN inversion methods have recently

been proposed, including optimization-based [7,67,69] and

learning-based methods [5,27,44]. We also incorporate im-

age inversion with LatentSwap3D for real image edits.

3. LatentSwap3D
3.1. Overview

We aim to build a generator-agnostic method for any pre-
trained 3D GAN without re-training or fine-tuning. La-

tentSwap3D consists of two main components. The first

one identifies essential features in the latent space of a 3D

GAN that controls the desired attribute through a random

forest algorithm. Then, the target attribute is applied in an

identity-preserving manner through a feature-swapping ap-

proach, see Fig. 2 for an overview of the two components.

3.2. Background

Neural radiance fields (NeRFs) are represented as a set

of multilayer perceptrons (MLPs), taking as input a 3D co-

ordinate (x,y, z), and camera azimuth and elevation an-

gles (φ, θ). The output is a spatially varying density and

a viewpoint-dependent color. Finally, an image is rendered

by sampling rays from the camera location towards the im-

age plane and evaluating the related radiance values [35].

3D GANs are built on top of the exact volumetric render-

ing and aim to learn to generate NeRF-like volumes from a

sampled latent noise vector by training only on unlabeled

2D images. While for 2D GANs, such as StyleGAN [26],

the generation is controlled by Adaptive Instance normal-

ization (AdaIN) [20], for a popular family of 3D-GANs,

e.g., π-GAN or MVCGAN, it is controlled by feature-wise

linear modulation (FiLM) [42] which learns functions f
and h which output γi,c and βi,c as a function of input xi,

γi,c = fc(xi) and βi,c = hc(xi) where γi,c and βi,c mod-

ulate a neural network’s activations Fi,c of ith input’s cth

feature map, via a feature-wise affine transformation:

FiLM(Fi,c|γi,c, βi,c) = γi,cFi,c + βi,c. (1)

f and h can be arbitrary functions such as neural networks.

In this family of generators, xi is the position in space to

render, and γi,c and βi,c are obtained starting from an input

latent code z and fed into a mapping network to guide image

generation through SIREN [54] based FiLM layers:

φi,c(xi) = sin(FiLM(Fi,c|γi,c, βi,c)). (2)

A notable exception to this sinusoidal modulation paradigm

is represented by EG3D [6], which inherits the network

structure and modulation style of the StyleGAN family [26]

of generative models to generate three planes of features

whose inner product defines the volume used for rendering.

For both families, the underlying idea of having a map-

ping network re-parametrizing the conditioning vector from

a random multivariate normal distribution to a modula-
tion/style space is shared. However, for models like π-GAN

and MVCGAN, the use of sine activation functions makes

the latent space periodic and, therefore, more challenging

to control compared to models based on AdaIn layers (e.g.,

StyleGAN or EG3D). For instance, βi,c is the phase shift of

a sine function and, according to Eq. 2, will give the same

output for every βi,c + 2k ∗ π with k ∈ Z. While γi,c
controls the frequency of the sine function and affects the

periodicity of the output. In practice, linear increases or de-

creases of (βi,c, γi,c) might result in the opposite effect on

the output of the sinusoidal activation. This causes some of

the method proposals for the latent space of GANs based on

AdaIN layers to fail, as shown in Sec. 4. Furthermore, all

3D GANs include several latent spaces, therefore, we need

to identify the most suited one for attribute editing.

3.3. Identifying Relevant Latent Dimensions

The core idea of LatentSwap3D lies in using a feature

ranking algorithm to determine the importance of features

2901



Feature

Ranking

Algorithm

Mapping

Network

Input

Pre-trained

Attribute

ClassifiersLoss

GAN

Feature

Importance

Frozen

Learnable

(a) Identifying Relevant Latent Dimensions.

Mapping

Network

Reference Image

with Attribute

Top-K

Dimension

Swapping

Edited

Input

(b) Attribute Editing on Latent Dimensions.

Figure 2: (a) We propose to train a random forest regressor taking latent codes si to predict the presence/absence of a desired

attribute. We use the trained forest to rank the importance of dimensions of si concerning the desired attribute. (b) Given the

latent code s of an image, first we find the closest latent code in the support set exhibiting the desired attribute (e.g., s+ to

increase blondeness), then we swap the top K dimensions related to the attribute to generate an edited latent code ŝ that can

be decoded in an edited image.

for a given attribute. In particular, for all experiments, we

rely on a random forest [4] due to their explainability.

An overview of the process is summarized in Fig. 2a. To

find relevant dimensions in the latent space of a 3D GAN,

we start by generating a set of images from randomly sam-

pled latent codes zi and corresponding mapped codes si.
Then, we assign an attribute score P for each image in the

generated set using pre-trained image attribute classifiers.

The scores correspond to the presence/absence of a partic-

ular attribute in the generated images. Using these scores,

we train a random forest classifier to predict the presence

of an attribute from the latent codes of the generator. Since

random forests are very effective models for ranking fea-

ture importance, we can explicitly identify the dimensions

of the latent code that correspond to desired attributes. In

practice, we use the occurrence with which a forest deci-

sion node selects the input dimensions to rank the relevance

of each dimension regarding the presence of a specific at-

tribute [11].

3.4. Attribute Editing on Latent Dimensions

The existing 2D GAN editing methods perform seman-

tic editing on latent spaces by applying algebraic opera-

tions. However, this is not applicable to 3D GANs that

utilize periodic activation functions during the style integra-

tion process, such as π-GAN and MVCGAN, as discussed

in Sec. 3.2, which is parameterized by a frequency and

phase shift. Inspired by the style mixing method proposed

in StyleGAN, we realize image editing by swapping dimen-

sions between reference and target latent codes. While style

mixing swaps entire blocks of latent codes to realize inter-

polation between two hand-picked latent codes, we auto-

matically identify the target code and use the ranking iden-

tified in Sec. 3.3 to precisely swap only a small subset of

dimensions. Thanks to this targeted swap, we achieve edits

that do not alter the identity of the original image.

We demonstrate the attribute editing process in Fig. 2b.

After determining the ranking of latent dimensions for a

given attribute with the random forest, LatentSwap3D re-

places the top-K features of the latent code of an image

being manipulated (s) with those of an image (s+) taken

from the support set used to train the random forest and ex-

hibiting the desired attribute. The output latent codes (ŝ)

generate the edited image with the desired attribute. In par-

ticular, we pick a reference image whose attribute score is

the lowest/highest for the desired attribute to remove/add

the corresponding transformation to the manipulated image.

The parameter K should be carefully chosen for each

transformation to preserve the identity of the generated im-

age after attribute editing. We use the identity loss LID

presented in Encoder4Editing [61] to automatically tune the

parameter K on a per-sample basis. This loss calculates

the cosine similarity between the feature embedding of the

original image and that of the edited image. For example,

in the face domain, we compute LID based on a pre-trained

ArcFace [12] face recognition network, while for other do-

mains, a ResNet-50 [18] network trained for MOCOv2 [8]

is used. In particular, we select the maximum K that satis-

fies the constraint LID < τ . We provide ablation studies of

the parameter K in Sec. 4.2.

To maximize identity preservation, we also choose a suit-

able reference image by: first selecting the top N images

with the highest attribute score from the support set; then

choosing the most similar to the one currently being edited

according to the cosine similarity between the respective

latent codes. This process ensures that features will be

swapped among similar samples sharing most attributes ex-

cept the one we would like to modify.
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3.5. 3D Attribute Edits on Real Images

Applying LatentSwap3D to a real image requires first

GAN inversion [64] to embed it in the latent space of the

pre-trained GAN generator. Furthermore, the inversion of

3D GANs also requires finding the camera pose from which

the real image has been acquired [44].

For 3D GAN inversion, we follow an iterative optimiza-

tion approach summarized in Fig. 3, where the latent vector

and pose are optimized alternatively. First, the latent vector

is initialized to the mean vector in the latent space, while

the camera pose is initialized to a neutral frontal position.

Next, we start the inversion process by optimizing the cam-

era location, c, while freezing the latent code, then we swap

roles and tune the latent vector s, keeping the camera fixed.

This process is repeated for a number of optimization steps.

Then the camera is fixed, while the latent code is further

optimized for a fixed number of steps.

Loss     

Update

Camera Location Real Image

Update

Latent Dimensions

GAN

Inverted Image

Figure 3: Inversion pipeline for a real image. s, c corre-

sponds to the latent code and camera location, respectively.

We use a linear combination of reconstruction losses

computed between the generated image and the reference

one to guide the optimization: L2, LLPIPS [72], and iden-

tity Loss LID [61]:

L = λ1L2 + λ2LLPIPS + λ3LID (3)

where the values of λs are specified in Sec. 4.

4. Experiments
LatentSwap3D is tested with three state-of-the-art 3D

GANs: π-GAN [7] as a representative of one-stage 3D

generators with periodical latent spaces, MVCGAN [74] as

a representative of two-stage 3D generators with high fi-

delity output, and EG3D [6] used to show how our proposal

also generalizes to generators that inherit the latent spaces

of StyleGAN. The images used in the experiments are

from four different datasets: Flickr-Faces-HQ (FFHQ) [25],

Large-scale CelebFaces Attributes (CelebA) [33] Cats [73]

and Animal Faces-HQ (AFHQ) [10].

π-GAN [7] is a NeRF-based one-staged 3D GAN. A ran-

dom noise vector z ∈ Z is first transformed into a 4608-

dimensional vector s ∈ S , corresponding to the frequency

and phase shifts of FiLM layers. For π-GAN, we use this S
space to apply our edits.

MVCGAN [74] proposes a two-stage 3D GAN. In

the first stage, a neural volume renderer generates a low-

resolution image and the geometry of a shape. In the second

stage, a 2D styles-based generator enables high-resolution

image generation. Its mapping network is converting from

random noise z ∈ Z into intermediate latent codes s ∈ S ,

conditioning the neural rendered. S Space has 4864 dimen-

sions and is the space we select to apply our edits.

EG3D [6] is also a two-stage 3D GAN. Unlike MVC-

GAN, EG3D firstly feeds latent codes to a style-based 2D

generator that predicts three orthogonal feature planes cor-

responding to the x, y, z axes of a 3D volume. Then, it uses

a neural volumetric renderer to decode interpolated features

from the three planes into a low-resolution image that later

gets fed to a 2D super-resolution network. The mapping

network of EG3D converts random noise z ∈ Z into inter-

mediate latent codes s ∈ S , which has 7168 dimensions and

is the space we select to apply our edits.

Implementation. LatentSwap3D is investigated on 10K
synthesized images for each dataset to train random forests.

Ablation on the size set can be found in Supplementary Ma-
terial. For the face attributes, such as gender, age, and

hair color, we use the pre-trained attribute models of the

StyleGAN [26] linear separability metrics. For both Cats

and AFHQ datasets, we train a model for each attribute us-

ing annotated data from PetFinder.my Adoption Prediction

Dataset [43]. For the selection of the number of features

K, we set τ to 0.25 for the face domain and 0.1 for other

domains. During the attribute editing step, we use a support

set of 32 images among whom to pick the reference image.

The ablation study on choosing τ and support set size can

also be found in Supplementary Material. The weights in

Eq. 3 are tuned to λ1 = 1.0, λ2 = 0.6 and λ3 = 0.3. To

rank feature importance, we use the mean decrease in im-

purity and the Scikit-learn [40] implementation.

4.1. Exploration of 3D GAN Latent Space

There has been limited investigation into the exploration

of the latent spaces of 3D GANs. As a result, the initial

phase of our research involves assessing the disentangle-

ment, completeness, and informativeness of a latent space

by utilizing the DCI metrics proposed in [15] and adapted in

StyleSpace [63]. We conduct experiments to explore each

generator’s most suitable latent space.

The training data of the DCI regressors are generated

using 40 binary classifiers trained with the CelebA at-

tributes [33] such as blond hair, gender, and eyeglasses .

10K random noise vectors, z ∈ Z , are sampled from a mul-

tivariate normal distribution and fed into the corresponding

generator to get latent codes and the generated images used

to train the DCI regressors. Table 1 shows how for π-GAN,
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π-GAN MVCGAN EG3D

Blonde (+) Smiling (+) Eyeglasses (-)

Smiling (+) Male (+) Age (-)

Blonde (+) & Smiling (+) Smiling (+) & Male (+) Eyeglasses (-) & Age (-)

Figure 4: Qualitative results for our method, LatentSwap3D, on CelebA [33] with π-GAN [7], CelebA [33] with MVC-

GAN [74] and FFHQ [25] with EG3D [6]. A random seed image from different viewpoints is shown on the first row,

followed by the edits for specific attributes and their combination (cumulative edits) in the last row, where (+/-) indicates

an increase/decrease in the edited attribute. The rightmost column shows a heatmap of the changes in the underlying 3D

geometry between the edited and original image.

Generator Space Disent.↑ Compl.↑ Inform.↑
π-GAN

Z 0.44 0.31 0.73

S 0.80 0.91 0.98

MVCGAN
Z 0.43 0.30 0.75

S 0.85 0.91 0.97

EG3D
Z 0.57 0.33 0.65

W 0.86 0.51 0.91

Table 1: DCI metrics for the different latent spaces of π-

GAN-CelebA, MVCGAN-CelebAHQ and EG3D-FFHQ.

Z contains vectors sampled from a multivariate normal dis-

tribution. S and W represent the intermediate latent space.

the S space has significantly better values in terms of disen-

tanglement, completeness, and informativeness. MVCGAN

shares similar latent spaces to π-GAN, and the S space is

better than the Z space. Finally, the DCI metrics for latent

spaces of EG3D show that W space is better than the initial

latent space Z . This indicates that intermediate spaces of

these models better disentangle the attributes of the gener-

ated images.

4.2. Qualitative Evaluation

Edits on generated images. Figure 4 illustrates qualita-

tive edits on the CelebA dataset for π-GAN and MVCGAN,

and FFHQ for EG3D, where we apply manipulations on at-

tributes such as blondness, smiling, changing gender, eye-
glasses type, and age. For these experiments, we sample a

seed image from a frontal viewpoint, extract the latent code,

and apply semantic edit in the latent space. Finally, we ren-

der the edited face from multiple views. We observe that our

method indeed enables attribute edits in a disentangled fash-

ion while maintaining 3D consistency from multiple views.

Input Breed

M
V

C
G

A
N

E
G

3D

Input Color

Figure 5: Results for AFHQ dataset [10] with MVCGAN

and EG3D generators.

We furthermore visualize 3D difference maps to evaluate

the 3D consistency by extracting the depth maps from the

underlying 3D geometry between the edited face and the

original one and calculating the absolute depth differences.

The rightmost column of Fig. 4 shows difference maps in

the form of heat maps, and the red color indicates distinct

changes. Especially in the case of MVCGAN, visual edits

correspond nicely to actual edits in the underlying 3D ge-

ometry (e.g., the smiling edit modifies the chin and lips).

We further observe that the semantic edit quality is natu-

rally bounded by the 3D generator’s quality (e.g., difference

maps from π-GAN blonde and smiling are noisier).
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In addition to disentangled attribute editing experiments

on human faces, Fig. 5 shows the results of MVCGAN, and

EG3D on the AFHQ dataset to prove the applicability of our

method. Our method can successfully modify the breed and

fur color.

Edits on real images. As explained in Sec. 3.5, our method

operates on real images captured from any viewpoint, then

successfully performs editing tasks on them. Figure 6

shows semantic edits, i.e., smiling and wearing eyeglasses,

on the sample inverted in the latent space of MVCGAN.

Input Inverted

Smiling

Eyeglasses

Figure 6: Inversion, editing, and novel view synthesis for

real images using our method and MVCGAN as a generator.

Comparison of CONFIG and LatentSwap3D. We com-

pare our proposed method, LatentSwap3D, to CON-

FIG [28], which is a neural face image generator devel-

oped to enable semantic edits. CONFIG has been explicitly

trained to manipulate certain attributes and it requires a high

amount of synthetic data, while LatentSwap3D finds the la-

tent codes that enable the semantically meaningful edits on

images without re-training the generator part.

Input CONFIG LatentSwap3D

In
ve

rt
ed

Sm
ili

ng
B

ea
rd

Figure 7: Comparison of CONFIG [28] and our method on

smiling and beard attributes for a real face image.

Figure 7 shows real images attribute editing of the two

methods for smiling (+) and beard. First, we observe that

the inversion quality of real images in LatentSwap3D is

better than the CONFIG method. Moreover, as the real-

ism of semantic edits is tightly coupled to inversion quality,

our LatentSwap3D generates more realistic edited images

that preserve the identity of the subject. This experiment

clearly shows the advantage of having a generator-agnostic

method like LatentSwap3D that can easily harvest the latest

advances on 3D consistent image generation over methods

like CONFIG, which are bounded to a specific architecture

and training regime.

2D editing methods on 3D GANs. We compare our

method with the state-of-the-art 2D-based latent space ma-

nipulators, namely, InterFaceGAN [49], SeFa [70], Latent-

CLR [50], and StyleFlow [2]. In Fig. 8, we show a smile

edit on π-GAN, MVCGAN, and EG3D. For SeFa and La-

tentCLR, identified directions that roughly correspond to

the desired edits have been manually selected. Our method

provides impressive results for π-GAN, MVCGAN, and

EG3D generators, whereas the other methods sometimes re-

sult in nonsensical images or entangled edits. Since Inter-

FaceGAN applies linear operations, if the coefficients of the

manipulation are too large, they might conflict with the peri-

odicity of latent space and generate unnatural images (such

as the face edit on π-GAN). StyleFlow changes the identity

and fails to apply the desired attributes. On the other hand,

SeFa and LatentCLR provide unsupervised edits, but there

are no semantically meaningful edits, and sometimes they

cannot preserve the identity.

Input SeFa LCLR. IGAN. StyleFlow Ours
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Figure 8: Comparison between InterFaceGAN [49],

SeFa [50], LatentCLR [70], StyleFlow [2] and La-

tentSwap3D on π-GAN, MVCGAN, and EG3D models

while performing a smiling edit.

Impact of parameter top-K. Figure 9 shows a qualita-

tive example that emphasizes the impact of the number of

dimension K swapped for two attribute edits. Higher K
values increase the strength of the edit but simultaneously

result in images less similar to the input. The percentage

reported above/below each sample shows the value of iden-

tity loss LID, in Fig. 9. Increasing K results in images

less similar to the input image but more similar to the refer-

ence image. We automatically set K for each sample being

edited such that LID, corresponds to τ , does not go above

25% for face datasets and 10% for other domains (animals).

The rightmost faces are the most similar in the support set.
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Figure 9: The % corresponds to the identity loss LID be-

tween edited and original as described in Sec. 3.4

Proposed method on StyleGAN2. LatentSwap3D is not

limited to 3D GANs but also works without modifications
on image-based GANs like StyleGAN2, see Fig. 10. First,

by applying the procedure in Sec. 3.3, we identify the latent

codes from the style space of StyleGAN2 that are most im-

portant for the desired attribute. Then, we swap those latent

codes to generate the desired edits, as explained in Sec. 3.4.

Input Eyeglasses (+) Smiling (-) Age (+) Blond Hair

FF
H

Q

Input Age (+) Black Hair Brown Hair Gray Hair

M
et

Fa
ce

s

Input Breed Input Breed Fur Color

A
FH

Q
-C
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s

Figure 10: Several attribute edits for human and animal

faces on StyleGAN2 [26] for AFHQ [10], MetFaces [23],

and FFHQ [25] by using LatentSwap3D.

4.3. Quantitative Evaluation

Semantic Correctness. To evaluate the effectiveness of our

attribute edits quantitatively, we use a pre-trained smile at-

tribute classifier [48] to measure the percentage of smiling

images in a set of 2500 images of not smiling faces. We edit

the images with different methods and measure the increase

in percentage. For the result, see Tab. 2. With π-GAN,

our method increases the percentage of smiling images by

84% whereas InterFaceGAN and StyleFlow increase only

by 77% and 79%, respectively. The same improvement ap-

plies to images generated by MVCGAN and EG3D. Per-

centages of improvement for each of them are 92% and

84%, respectively.

π-GAN MVCGAN EG3D

Unedited Images 4% 3% 9%

InterFaceGAN [49] 81% 84% 85%

StyleFlow [2] 83% 78% 88%

Ours (LatentSwap3D) 88% 95% 93%

Table 2: Semantic correctness metric among different im-

age editing methods for π-GAN [7], MVCGAN [74], and

EG3D [6] on smiling attribute edits of face images.

Identity preservation. We measure the identity preserva-

tion between input and edited images using an identity veri-

fication tool [48] based on FaceNet512 [46]. Table 3 shows

the identity preservation metric on 10K images, and com-

pared to the other methods, our method is the best to pre-

serve the identity of the input image.

π-GAN MVCGAN EG3D

LatentCLR [50] 54% 61% 69%

SeFa [70] 62% 64% 58%

InterFaceGAN [49] 30% 51% 71%

StyleFlow [2] 68% 65% 72%

Ours (LatentSwap3D) 74% 71% 73%

Table 3: Identity preservation metric among different im-

age editing methods for π-GAN [7], MVCGAN [74], and

EG3D [6] on several attribute edits of face images.

5. Conclusions
To the best of our knowledge, we propose the first

generator- and dataset-agnostic semantic editing method for

3D GANs. We show this by applying our method to various

generators (e.g., π-GAN, GIRAFFE, StyleSDF, MVCGAN,

EG3D and VolumeGAN) and datasets (e.g., FFHQ, AFHQ,

Cats, MetFaces, and CompCars). Additionally, our method

enables complex edits and multi-view consistent rendering

from a single image of a real face or an object, opening

the path to multiple practical applications. The broader im-

pact of this work includes possible use cases in compression

for video conferencing or 3D manipulation for AR over-

lays. On the other hand, like all GAN-based image edit-

ing methods, LatentSwap3D will suffer from datasets bias

and is limited by the images that can be modeled by the

GAN being manipulated. However, considering the rapid

progress in generative modeling and the generality of our

proposed framework, we envision that our method will be

equally applicable in future generations of generative mod-

els, resulting in even more impressive editing capabilities.
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