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In this supplementary material, we first present the im-
plementation details of BluNF (Section A). Next, we cover
more details of datasets used in our work (Section B), and of
BluNF pipeline (Section C). Finally, we discuss the broader
impact of our proposed method (Section D).

In addition, a video ‘10 demo.mp4’ accompanies this
submission. In this material, we summarize our method,
explain our results and illustrate the different applications.

A. Implementation details
Our implementation is based on Nerfstudio [8], on which

we build our original BluNF pipeline. For the input en-
coder module of BluNF, we use 2D NeRF-like positional
encoding [4], while the semantic field consists of two fully-
connected layers. We use Adam optimizer [3] with a learn-
ing rate of 3.0 × 10−2. The optimization for a single
blueprint takes around 10k steps, i.e. approximately 10 min-
utes with a single NVIDIA Quadro RTX 6000.

B. Datasets
We apply our method on two different datasets:

Replica [7] and MatterPort3D [1].

B.1. Dataset description

Replica comes with ceiling-related semantic classes; to
avoid a complete occlusion of the blueprint, we mask these
classes on semantic maps: i.e. we do not sample rays on
these classes. Note that, MatterPort3D scenes do not have
ceiling-related semantic classes.

R1 (Replica - room 0). We show in Figure 1.a that this
scene corresponds to a classical living room layout, with,
for instance, sofas, armchairs and a coffee table. This scene
contains 17 semantic (set of entities) classes.

R2 (Replica - room 2). We show in Figure 1.b that this
scene corresponds to a classical dining room layout, with,
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among others, chairs and a table. This scene contains 12
semantic (set of entities) classes.

M1 (MatterPort3d - gZ6f7yhEvPG). We show in Fig-
ure 1.c that this scene corresponds to a historical chapel
layout, with, for example, stone benches and a reading desk.
This scene contains 23 instance (single entity) classes.

M2 (MatterPort3D - pLe4wQe7qrG). We show in Fig-
ure 1.d that this scene corresponds to a historical chapel lay-
out as well. This scene contains 27 instance (single entity)
classes.

B.2. Extraction of ground-truth blueprint

Extracting the ground-truth blueprint is not a straightfor-
ward operation, and requires manual actions. In the Habitat-
Sim 3D simulator [6], we load the 3D model of the scene.
We look for the gravity direction, and we set the camera in
this direction in the centre of the scene. For Replica, we
need to adjust the height of the camera to avoid ceiling oc-
clusion. Once we make sure that the camera is orthogonal
to the ground and change the scaling factor to project all the
pixels into a fixed resolution is correct, we take a shot. Next,
we align this shot with a grid of coordinates to make sure
that predictions and ground truth match at the pixel level.

B.3. Influence of dataset quality

In Section 4.1 of the main manuscript, we claim that
NeRF-estimated depth from MatterPort3D is poorer than
NeRF-estimated depth from Replica, because of the intrin-
sic quality of these datasets.

Quantitatively, we observe this phenomenon with the l1-
error of depth maps over both datasets. As shown in Ta-
ble 1, the mean and standard deviation over all depth maps
of R1 are respectively 0.063 and 0.091. In contrast, M1 has
l1-error mean of 0.377 and a standard deviation of 0.217.
These numbers clearly show the difference in depth estima-
tion quality between the two datasets.

Moreover, this error gap is visually verified in Figure 2.
With these two examples, we observe that in M1 scene: (i)



R2 (Replica - Room 2)

(b)(a)

R1 (Replica - Room 0)

(c)

M1 (MatterPort3D - gZ6f7yhEvPG)

(d)

M2 (MatterPort3D - pLe4wQe7qrG)

Figure 1: Overview of the rooms from Replica and MatterPort3D datasets. For each room, we show a 3D view and the
ground-truth blueprint.

Figure 2: Comparison between ground-truth depth (row
2) and NeRF-estimated depth (row 3) on the M1 dataset.
Each column corresponds to a different frame within the
dataset, and the last row shows the depth l1-error (dark for
low error, light for high error).

Depth l1-error Mean Std

Replica - room 0 0.063 0.091
MatterPort3D - gZ6f7yhEvPG 0.377 0.217

Table 1: Mean and standard deviation (std) of depth l1-error
over Replica - room 0 and MatterPort3D - gZ6f7yhEvPG.

(a) w/o PE (b) w/ PE

Figure 3: Visual comparison of different input encodings
under noisy conditions. (a) Result with positional encod-
ing (PE), and (b) result without positional encoding (w/o
PE).
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Figure 4:

black areas (undefined pixels) are sources of depth error
(see Figure 2.a left part), and (ii) artefacts due to the real-
world nature of this dataset are also sources of depth error
(see Figure 2.b centre part).

C. BluNF

Positional encoding. In this paragraph, we demonstrate
the efficacy of Positional Encoding (PE) in disentangling
geometric ambiguities that arise when projecting pixel co-
ordinates onto blueprint coordinates (refer to Section 3.1).
To evaluate this, we conduct a toy experiment by replacing
40% of the BluNF training semantic views with uniform se-
mantic views (only one semantic class).

Figure 3 showcases the results obtained with and without
PE. We observe in Figure 3b, that PE achieves significantly
superior results compared to Figure 3a. Indeed, without PE,
BluNF tends to merge all shapes together. This observa-
tion highlights the effectiveness of PE in resolving geomet-
ric ambiguities and improving the overall disentanglement
process.



Editing. In this paragraph, we present further details on
the prompting editing method introduced in Section 4.3 of
the main manuscript. Figure 4 shows the integration of
BluNF with a text-to-image model. Users can edit the 3D
scene effortlessly by writing a prompt and selecting a con-
nected component on the blueprint by clicking. In this par-
ticular example, we utilize the DreamTextures [2] model, a
DreamBooth [5] model fine-tuned to diffuse textures from
text prompts.

D. Broader impact
Practical impact. There are various potential applica-
tions for BluNF. In this paragraph, we highlight two main
application domains: (i) architecture, and (ii) cinematogra-
phy.

First, our method could be useful for architectural pur-
poses and especially for interior designers. For instance,
we could imagine an interior designer using BluNF to show
different layouts. The designer could directly manipulate
the blueprint and show the results through the synthesized
views of the NeRF.

Second, in cinematography, BluNF could be used as
a strong post-processing tool. For example, a filmmaker
could use it to remove a prop that disturbs the framing or to
adjust the colour of the layout to better fit with the artistic
direction.

Environmental impact. All experiments are done on a
single NVIDIA Quadro RTX 6000 GPU, which requires
260W in power supply. Training a BluNF model on a scene
requires around 10 GPU minutes. For this project, we use
approximately 100 GPU hours, which amounts to 26kWh
and 936g of CO2 emitted.
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