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A. Additional Examples

We provide additional examples for the applications in
the main paper. In Figure 1 we display additional views
for the object replacement comparison with Volumetric Dis-
entanglement for 3D Scene Manipulation [2]. In Figure 2
we demonstrate new object insertion using several captions
from COCO dataset [9]. In Figure 3 and Figure 4 we show
more examples for object replacement, and in Figure 5 and
Figure 6 we display more edits and views for texture con-
version task on 360 scenes.

B. Implementation Details

In this section we provide additional implementation de-
tails.

B.1. ROI Specification Interface

To specify the ROI and use it to decompose the scene,
we introduce a graphic interface that enables positioning an
axis-aligned 3D box inside the scene. Given the 3D position
of the center, as well as the axis dimensions, of the box, ren-
dering of the scene is performed from the provided camera
position using the original NeRF model Fgo . The edges of
the 3D box are then projected onto the image plane using
the camera matrix. To provide intuitive feedback regarding
the location of the box in the scene, we utilize the depth
map of the scene to remove parts of the box edges that are
occluded by the scene. In this manner, the user is able to
specify the ROI in a precise and intuitive way by moving
the box and modifying its dimensions while being able to
inspect the location from any point of view.

B.2. Pose Sampling

In each training step, we sample a camera pose from
a range of distances and angles, depending on the scene
type. In the blender and 360 scenes, we sample azimuth
and elevation angles in the ranges: 6 € [—180°,180°],
¢ € [—90°, 15°]. For the radius, we first calculate the initial
distance according to eq. (10) and then randomly sample
the radius around this value. In IIff dataset [12] we sample
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the camera pose from a spiral curve as used in the original
NeRF implementation ' . The curve is randomly sampled
from a range of distances and radii in each axis. After sam-
pling a camera pose, we recenter its rays around the ROI by
moving its center location according to the center of mass
inside the ROI (tracked by exponential moving average dur-
ing training), but allow with a probability p € [0, 1] (hyper-
parameter, set to 0.1 in our experiments) to recenter the rays
to a different point inside the ROI, with the aim of obtain-
ing more versatile objects and densities. Additionally, we
set the near and far planes (n, f) according to the box lo-
cation and size in order to be more concentrated around the
ROI and get more sample points per ray in this area:

D
where d is the distance of the camera from the center of

mass inside the box and D is the box diagonal length.

B.3. Hyperparameters

In our experiments we set the max transmittance of L,
the max variance of Lp and the weights of the losses to:
7=0.88, p=0.2, \p = 0.25, A\p = 4. We use the same
network architecture as in [1 1] and the same hyperparam-
eters and learning rates. To guide our model, we use the
CLIP B/32 architecture.

B.4. Training

We train our model with a random seed value of 123 for
all of our experiments. In experiments, we render the views
at 168x168 resolution and up-sample to 224x224 resolution
before feeding them to CLIP [15]. In the Comparisons and
a Ablation study sections, we train the generator for 40,000
iterations and for the other figures in the main paper, the
views resolution and the number of iterations depends on
the complexity of the synthesized object and hardware lim-
itations. We train with 4 x 24 GB A5000 GPUs. Training
takes between a few hours to one day. We find that the
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(a) "aspen tree”

(b) ’strawberry”

Figure 1: Additional views for object replacement comparison. Additional views for the object replacement comparison
with Volumetric Disentanglement [2]. The first and second rows display [2] and our results accordingly.

. -
“broccoli laying on
on a plastic board.”

“red and blue fire hydrant.”

-
”snowboard standing in
a snow bank.”

- m——

“bouguet of wilted
red roses on a table.”

”zebra eating grass
on the ground.”

Figure 2: Object Insertion. Insertion of new objects from COCO dataset [9] into an empty region in fern lIff scene. Each

column shows two views of the same edited scene [12].

primary driver for runtime/hardware requirements are the
view resolution and the size of ROI (which require render-
ing more points along each ray).

B.5. Directional Dependent prompts

As described in the main paper, each iteration we con-
catenate a text prompt to the input caption depending on the
camera location in the scene. We use the direction prompts
below depending on the location:

e 7 top-down view”
* 7, front view”

e 7 side view”

¢ ” back view”

In forward-facing scenes like 1Iff dataset [12] we use the
first three captions.
C. Additional Experiments Details

In this section we provide additional information regrad-
ing the experiments from the main paper.

C.1. Metrics

In our quantitative evaluation we report four metrics:
CLIP Direction Similarity, CLIP Direction Consistency,
LPIPS and R-Precision.



(b) edited scene.

Figure 3: Object Insertion in vasedeck 360 scene. We used the text: ”a photo of a purple, white and blue flowers petals on
the ground” and eq. (5) with o = 3.5 to generate the edit.

Figure 4: Object replacement in 360 pinecone scene. We replace the original pinecone object with pineapple using our
proposed object replacement method.

CLIP Direction Similarity introduced in [4] as a direc-
tion loss which measures the similarity between the change
in the text descriptions and the change in the images. We
use a variation of this metric so that high similarity will have Al = Ei(Ie) = Er(I,) @)
high metric score: I AT - AT

direction — |AT ||AI |

AT = Ep(T,) — Er(T,)



Original Scene. ”Burning pinecone”. ”Iced pinecone”. ”Golden pinecone”. ”Pinecone made of pink wool”.

Figure 5: Texture conversion on 360 pinecone scene.

(a) original Scene.

(d) “a water paint of a vase with flowers.”

Figure 6: Texture conversion on 360 vasedeck scene.



When Er, E; are the text and image encoders of CLIP,
T., T, are the text captions describing the edited and
original scene inside the ROI and I, I, are the according
edited and original scenes views. In our experiments on the
fern 1Iff scene [12], we set T}, to: a photo of a fern trunk”.

CLIP Direction Score introduced in [5] measures the
consistency between adjacent frames by calculating the
CLIP embeddings of two corresponding pairs of consecu-
tive views, one from the original scene and one from the
edited scene. Similar to CLIP Direction Similarity metric,
we then compute the similarity between the change in the
original and edited scene views to get the final consistency
score:

Al, = Ef(I74) — Er(17)
Al = EI(Iie+1) — Er(I7)
Al, - Al,
|AL ||AL |

3)

Ldirection =

o o € € 1o1 1
When [?, I?,; and I?, I?,; are the original and edited
consecutive views pairs. In our experiments we compute
this score on six consecutive views and average the results.

LPIPS or Learned Perceptual Image Patch Similarity, is
used to judge the perceptual similarity between two images,
[16] shows that this metric match human perception. The
metric computes the similarity between the activation’s
of the two images for some network architecture. In
our experiments we use LPIPS with pre-trained alexnet
architecture [7] to measure the background similarity
between the original and the edited scenes by masking the
ROI region.

R-Precision [13] measures how well a rendered view of
the synthesis object align with the text caption used to gen-
erate it. It computes the precision of the rendered views
over a group of text captions using a retrieval model. Simi-
lar to DreamFields [6] we collect an object-centric captions
dataset from COCO dataset [9] and sample 20 captions that
will be used for training our model. We than compute the
precision of the rendered views per synthesis object over
the 153 captions. As the language image model backbone
of the score, we use both CLIP [15] and BLIP2 [&], since
we use CLIP to train our model.

D. Concurrent Work

Concurrently with our work, Instruct-NeRF2NeRF [5]
present a diffusion-based method for editing a NeRF scene
guided by text instructions. It utilizes InstructPix2Pix [3],
which enables editing images based on text instructions.
The edit is preformed by iteratively updating the image

dataset of the original scene while training NeRF using
these edited images. They demonstrate an impressive high
quality local edit results on real scenes but sometimes can’t
preserve the rest of the scene and get a blurrier scene com-
pared to the original, and sometimes even introduce texture
and color changes to the entire scene.

SKED [10] research the possibility to edit a NeRF scene
using guidance from 2D sketches from different views ad-
ditional to an input text prompt describing the edit. They
utilize the SDS loss presented in [14] to steer the edit to-
wards the input caption and present preservation and sil-
houette priors to preserve the original scene and to preform
the edit only on the sketched regions. In experiments they
apply their method mainly on synthetic objects and demon-
strate its applicability on objects insertion and replacement
tasks such as hats, flowers and glasses.

In SINE [!], they suggest a method for editing NeRF
scene by only editing a single view, and than apply the edit
to the entire scene. To do this they encode the changes in ge-
ometry and texture over the original NeRF scene, by learn-
ing a prior-guided editing field. Using this field they render
the modified object geometry and color and present color
compositing layer supervised by the single edited view to
apply the edit on novel views. They apply their method on
real and synthetic scenes by changing the geometry and tex-
ture of objects in the scene.
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