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1. Detailed Formulations

1.1. Sparse Convolutions

Sparse convolutions are a variant of standard convolutions
that are used in deep learning. In a sparse convolution, only
a subset of the input elements is used in the computation,
which allows for more efficient use of computation resources
and can improve the performance of the convolutional neural
network. To perform a sparse convolution, we first define
a set of indices that specify which input elements should
be used in the convolution. This set of indices is called the
"support" of the convolution. We then use these indices to se-
lect the relevant input elements and compute the convolution
using these elements. This is typically done by applying a
filter to the selected input elements and summing the results
to produce the output of the convolution.

In the simplest 1 D case, let x be the input tensor, w
be the convolutional filter, and c be the support of the con-
volution (i.e. the set of indices specifying which elements
of x should be used in the convolution). The output of the
sparse convolution, y, can be computed as: y = x[c] ∗ w
where ∗ denotes the convolution operation, and x[c] is the
subset of elements from x specified by the support c. This
equation applies the convolutional filter w to the selected
input elements and sums the results to produce the output of
the convolution. For more detailed formulation and imple-
mentation of the Sparse convolutions we used in our work,
please refer to MinkowskiNetwork [3].

1.2. Q-Gaussian loss sampling

In the space of sparse voxels of high resolution, defining
where the loss is sampled is difficult, especially if the output
topology is unknown. One of the challenges in working with
sparse voxels of high resolution (e.g. 512) is that training can
not involve densifying the voxels to the original resolution
(i.e. 5123) due to prohibitive memory requirements. The
input/output topologies are not necessarily the same, as the
sparse convolutional strides and pruning can alter the sparse

voxels’ coordinates. This is why the sampling function S
in Eq (??) is of utmost importance in guiding the training
of SuRFNet. We sample at random coordinates centered at
the center of the voxel grid S : c ∼ Q

(
N (H2 ,

Hσ2

2 I)
)

,
where H = (H,H,H) is the voxel grid resolution vector, I
is the identity matrix, σ is a hyperparameter determining the
spread of the loss, and Q : R3 → Z+3 is the quantization-
and-cropping function of coordinates that ensure the output
coordinates are integers within bounds c ∈ [0, 1, ...,H−1]3.
We discuss more details about S and alternative configu-
rations in Section 3.3. Simply put, the Q-Gaussian is 3D
normal distribution quantized to integer coordinates to give
prior about where the output is expected and where the loss
is defined.

2. Detailed Setup
2.1. SPARF Dataset

All the rendered images are of 400× 400 resolution with
4 channels (RGB + alpha channel for background). SPARF
has three main splits for every 3D shape: training views (400
views), test views (20 views), and an OOD “hard" views
(10 views) as can be shown in Figure 13. Regarding the
collected SRFs, Plenoxels [4] is used as the base module.
The spherical harmonics dimension of the whole SRFs is d =
4×3 = 12, while for partial SRFs, it is d = 1×3 = 3. Most
of the hyperparameters used in optimizing the SRFs are the
default ones proposed in the Plenoxels paper [4] (as can be
seen in the attached code under Svox2/opt/opt-py). However,
the following hyperparameters were engineered in order to
scale up the optimization and maintain the quality of the
SRFs ( as can be seen in Figure 14, and 15). The flickering
temporal noise introduced in the 323 resolution SRFs is
due to the extremely low number of voxels representing the
radiance fields while the views are rendered densely from
the spiral sequence, hence aliasing occurs.

Running Plenoxels [4] for fewer iterations (3×12K) re-
duces the time by 30% while maintaining the same PSNR.
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SRF Voxewl Nb. of Nb. of
Type Resolution Variants SRFs

Partial

32
4×1-view 158,816
4×3-view 158,816

128
4×1-view 158,816
4×3-view 158,816

512
4×1-view 158,816
4×1-view 158,816

Whole
32 1×400-view 39,704
128 1×400-view 39,704
512 1×400-view 39,704

Total - - 1,072,008
Table 1. SPARF Anatomy. We show the distribution of the one
million SRFs collected in SPARF between multiple resolutions and
between whole and partial SRFS.

Using 400 views/shapes in SPARF to optimize the SRFs
keep the time manageable in optimization (∼ 4 minutes for
the 512 resolution) while maintaining high PSNR (∼ 30dB).
When saving the SRFs, we only save the set of coordinates
(integers) and float features (densities and radiance com-
ponents). The upsampling iteration of Plenoxels is set to
1×12K for faster convergence. The distribution of the col-
lected dataset is detailed in Table 1. More examples of the
whole vs. partial SRFs collected in SPARF can be found
in Figure 1. A total of 200K GPU hours are used in the
optimization process to collect SPARF. The whole SRFs are
easily convertible to high-quality meshes using Marching
Cubes [8] as shown in Figure 2. While the SPARF dataset is
indeed larrge in total ( 3.4 TB), its posed-images part is only
360 GB, which makes it manageble for training on other
applications that require dense posed images.

2.2. SuRFNet Training

We use a voxel resolution of 1283 of the SPARF dataset
in most of the learning experiments and visualizations in
this work, unless otherwise clearly stated. This choice is to
reduce the computational cost of training the heavy pipeline
and to facilitate the development of proper learning methods
on SRFs. The input SRF is normalized with a fixed value
of 10,0000 for the density and 10 for the colors, to ensure
the distribution lies within -1 to 1. The Q-Gaussian std σ
is set to 0.444 (studied more in Section 3). The strides for
the SuRFNEt are all set 2, while the network depth l = 3
modules. The batch size for training is 14 when A100 GPUs
are used and 6 when V100 GPUs are used. The training satu-
rates at 100 epochs. The optimizer used is AdamW [9] with
a learning rate of 0.01, a momentum of 0.9, a weight decay
of 1e− 5, and a learning rate exponential decay rate of 0.99.
The hyperparameters λR, λα, λρ are all set independently to
each class, where a different network is trained on each class

Whole SRF Partial (3 Views) Partial (1 View)

Figure 1. Whole vs. Partial SRFs. The partial SRFs are used in-
stead of the few images that generated them as input to the learning
pipeline to generate the whole SRFs

SRF Renderings Extracted Mesh

Figure 2. Extracting 3D Meshes from SRFs. Since SPARF and
SuRFNet live on the 3D voxel’s space, extracting the mesh is
straightforward with one pass of MarchingCubes [8].

separately. Most classes have λα = 30.0, λρ = 1.0, λR. We
did not prune the output sparse voxel as this leads to harming
performance most of the time and increase the problem of
vanishing gradients. The background color of the rendered
images Rϕ (F(X )) is masked out from the perceptual loss
and the density component α of the output SRF is also not
affected by the perceptual loss, as this can cause excessive
densities around the object, leading to deteriorating the SRF
output perceptuality. During training with the perceptual
loss, three randomly selected images from three different

2
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ϕ as used as labels for the three rendered images from the
output Rϕ (F(X )). The SuRFNet is jointly predicting the
density and radiance of spherical harmonics colors, but with
different heads. More setup details can be found in the at-
tached code and analyzed further in Section 3. We train
a separate model for each class, to maintain high-quality
generation of 3D SRFs.
Retraining Baselines. To compare to the preprinted base-
lines PixelNeRF and VisionNerf ( which use 64× 64 resolu-
tion), we upsample their resolution at inference at test poses
while using their pretrained weights of the NMR dataset.
The upsampling is using the bicubic sampling of the Pytorch
Transforms library. These baselines are used in this works
by default unless otherwise specified.

Retraining the methods from scratch on the high resolu-
tion 400× 400 is computationally expensive. To illustrate
the retraining cost, VisionNeRF [7] was originally trained
on 16 A100 GPUs for a week just to converge on 64 × 64
resolution. SPARF’s 400 × 400 resolution images would
need ∼ 39 times as much time/compute due to per-pixel
sampling. In contrast, our SuRFNet was trained on a single
V100 GPU for 3 days, which allows for fine-tuning of the
learning pipeline for quick convergence. However, for a fair
comparison, We retrain PixelNeRF [14] on the 13 categories
and report the 3-view and 1-view PSNR results in Table
2. We see that our SuRFNet indeed surpasses this baseline
trained on the same SPARF data. The results of retraining
are not very different from the pretrained weights (slight
improvement) because training on SPARF high-resolution
images is unstable using these 2D-based NeRF networks
that need a per-pixel sampling, which diverges the training
in some cases. The full results are shown in Table 2

3. Additional Analysis
3.1. Shiny Objects

Some of the rendered objects have reflective materials,
resulting in distorted optimized radiance fields for these
shapes despite using all of the views. We separate these
distorted SRFs (only 76 shapes in total) from the SPARF
dataset (see Figure 3).

3.2. Effect of Dataset Size

We study the effect of increasing the dataset size (Whole
SRFs and Partial SRFs) on the generalization performance
of SuRFNet in Figure 5,4. It shows that as the dataset size
increase ( normalized the number of shapes in each class
), the generalization performance increase. This scalability
effect underlines the importance of SPARF. However, as can
be seen from these two figures, partial SRFs scalability is
more important than increasing whole SRFs, which justifies
collecting 4 variants per resolution ( as detailed in Table 1).
This observation aligns with previous generative models in

Figure 3. Shiny Objects Corrupts SRFs:. Optimizing SRFs on
shiny objects with a reflective material (left) results in distorted
radiance fields (right). These distorted SRFs (of 76 shapes in total)
were separated from the main classes in SPARF.
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Figure 4. Scaling-Up Training on SRFs: Partial SRFs. As the
training data (partial SRFs) of radiance fields increase, the general-
ization improves, as can be seen in the car class here. The 3-view
and 1-view metrics are reported with test and OOD metrics.
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Figure 5. Scaling-Up Training on SRFs: Whole SRFs. As the
training data of radiance fields increase, the generalization improves
across different classes in SPARF.

the literature [5, 13, 6]

3.3. Loss Ablation Study

Loss Sampling. We study the effect of the sampling strategy
with a different number of input images at test time on the
performance of SuRFNet in Table 3. It shows that using a
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SPARF Classes
Baselines chair watercraft rifle display lamp speaker cabinet bench car airplane sofa table phone mean

Plenoxels [4] (1V) 10.1 12.1 12.6 8.7 14.7 8.7 10.9 11.4 7.7 14.0 9.7 10.5 9.5 10.8
Plenoxels [4] (3V) 10.8 13.3 15.6 9.7 16.2 10.1 12.1 12.1 9.0 15.4 11.4 10.8 10.2 12.1
PixelNeRF [14] (1V) 10.8 14.1 14.2 9.0 15.6 9.2 10.5 12.4 10.1 15.7 11.1 10.6 11.1 11.9
PixelNeRF [14] (3V) 11.0 14.1 14.2 9.3 15.7 9.4 10.6 12.7 10.1 15.7 11.3 10.9 11.4 12.0
PixelNerf ∗ (1V) 13.8 12.2 15.0 17.5 19.0 11.2 17.5 13.3 12.2 17.9 11.3 11.7 14.7 14.5
PixelNerf ∗ (3V) 17.5 13.6 16.2 11.7 20 15.6 13.1 17.6 12.1 18.2 16.2 12.1 10.7 15.0
VisionNeRF [7] (1V) 16.5 18.4 18.5 15.1 19.3 13.2 16.1 16.3 13.8 21.8 15.1 14.8 14.0 16.4

SuRFNet (ours) (1V) 15.7 15.5 19.1 14.1 18.5 14.5 18.7 15.6 18.1 20.3 16.3 14.1 17.4 16.8
SuRFNet (ours) (3V) 18.6 20.7 20.9 17.1 21.2 18.5 21.7 17.6 18.9 21.9 20.4 16.7 20.0 19.5

Table 2. SPARF Benchmark on Novel View Synthesis (Normal Test). We compare the validation PSNR of some of the widely used novel
view synthesis techniques on the SPARF dataset for the generalization of novel view synthesis beyond a single example and on the normal
testing-views tracks similar to the ones seen in training views. One view (1V) and three views (3V) inputs are reported, and ∗ indicates
retraining the baseline backbone on the high-resolution images of the SPARF dataset.

1-view 3-view

Strategy PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
uniform 20.03 0.94 0.10 21.00 0.94 0.09
Q-Gaus. 20.55 0.93 0.09 21.83 0.94 0.08

Table 3. Effect of Loss Sampling Strategy.We study the effect of
Loss sampling strategy (uniform vs. Q-Gaussian) on airplane class.

uniform sampling strategy depletes the learning capacity of
the network and can degrade performance. The effect is more
evident when the number of views is one, where the partial
SRFs are more sparse and the training is delicate. Loss
Hyperparameters. For the density threshold αdense defined
in Eq 2 and 3, the validation accuracies of SuRFNet on car
class are 13, 14.7, 67.8, 67, 67, 67.2, 62.5 for the values of -
0.01, -0.001, 0, 0.001, 0.003, 0.01, 0.03 of αdense respectively.
The hyperparameter σ which governs the spread of the Q-
Gaussian loss is studied as follows. the validation accuracies
of SuRFNet on airplane class are 52, 70.4, 71.7, 72.1, 72.2,
72.4, 72.3 for the values of 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and
1.0 of σ respectively. The number of coordinates c sampled
in the Q-Gaussian loss is proportional to the number of
coordinates in the input SRFs with multiplier K = 40. For
different values of this multiplier 1, 5, 10, 20, 40, 80, 200, the
validation accuracies of SuRFNet trained on airplane class
are 72.2, 72.7, 72.9, 72.5, 71.8, 71.7, and 71.6 respectively.

3.4. Faulty Textures

In some rare instance of the shapes in ShapeNet [2], some
objects have doubled textures in some areas. This occurs in
less than 1% of the data and leads the renderer to render the
background instead in these areas (highlighted with green).
See Figure 6 for examples of these cases.

3.5. The Irregularity of SRFs

The optimized whole SRFs used in our training are irreg-
ular 3D data structures. They hold many non-empty voxels
that contain low-density radiance information that does not

Figure 6. Rare Cases of Faulty Textures. Some objects in
ShapeNet [2] have doubled textrures in some parts, leading to
faulty renderings.

output w/o LR output w/ LR whole SRF

Figure 7. Effect of the Perceptual Loss LR. Adding a perceptual
loss on volume-rendered images during training SuRFNet insures
the rendered images remain closer to how they should be rendered,
as the 3D radiance colors supervision won’t guarantee the rendering
quality. (left): without perceptual loss , (middle): with the loss.

affect rendering. As can be seen in Figure 8, the non-empty
and low-density components do not affect rendering but con-
tain radiance information ( e.g. black albedo) that affects the
3D learning pipeline. This motivates the use of the special-
ized losses proposed in this work, in order to tackle these
challenges associated with SRFs.

4. Additional Results

Additional results of normal test tracks benchmark of
SPARF are presented in Table 2. Please see figures 12 and
13 for differences between the normal train/test track and
the OOD hard track .More comparisons and generations are
provided in Figures 17,18,16. Regarding real images, we
ahow more Co3D images and their SRFs and PixelNeRF
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Figure 8. The Irregularity of SRFs. The optimized SRFs used
in our training are irregular 3D data structures. they include non-
empty voxels that contain low-density radiance information that
does not affect rendering. (top): renderings of a whole SRF, (bot-
tom): renderings of the same SRF when densifying non-empty
voxels.

reconstruction in Figure 19. Note that the goal of this figure
is to demonstrate the quality of the renderings form proper
SRFs (similar ot the ones used in training SuRFNet), com-
pared to a 2D-based network ( like PixelNeRF [14]). It is
not used to evaluate generalization ability from few input
views on real images, but to show the potential of training
on real images.

one important aspect to consider is the 3D consistency of
our SuRFNet renderings compared to the other 2D methods,
especially when moving out-of-distribution of the training
views. This is one of the most important aspects we investi-
gate in our work that previous works in the literature have
overlooked. Figure 9 demonstrates that as the testing ren-
dered views move outside of the training distribution (going
right), SuRFNet generally produces more consistent render-
ings than all previous 2D-based methods [[14, 7]].
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SPARF (ours) SRN [12] NMR [10]

Figure 10. SPARF vs. other Datasets . SPARF offers a large-scale high-resolution dataset compared to other posed multi-view datasets.
Note that SRN [12] has only cars and chairs, while NMR [10] and SPARF has 13 classes.
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Figure 11. SPARF: a Large Dataset for 3D Shapes Radiance Fields and Novel Views Synthesis.
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Train Test Hard Test (OOD)

Figure 12. Cameras Setups for Different SPARF Splits. Here, we show different visualizations of the camera setups of the three splits of
SPARF. (Train): 400 determinsitic spherical views, (Test): 20 random spherical views, (hard OOD Test): 10 random views.

Train/Test Track

OOD Hard Test Track

Train/Test Track

OOD Hard Test Track

Figure 13. SPARF Splits. SPARF has three main splits for every 3D shape: training views (400 views), test views (20 views), and OOD
“hard" views (10 views) as can be shown in the examples above.

3
[14] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

pixelnerf: Neural radiance fields from one or few images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4578–4587, 2021. 3,
4, 5, 12, 13, 14
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Figure 14. SRFs: The optimized Sparse Radiance Fields in SPARF 1. A total of one million SRFs have been collected in SPARF,
including on multiple voxel resolutions: 32 (top), 128 (middle), and 512 (bottom) for every 3D shape.
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Figure 15. SRFs: The optimized Sparse Radiance Fields in SPARF 2. A total of one million SRFs have been collected in SPARF,
including on multiple voxel resolutions: 32 (top), 128 (middle), and 512 (bottom) for every 3D shape.
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Ground Truth Whole SRFs Generated SRFs (5123 resolution)

Figure 16. SuRFNet: Generating High-Resolution Radiance Fields. We show some volume-rendered sequences based on our SuRFNet
voxel radiance field outputs (512 resolution), given only 3 images of each shape. This demonstrates the capability of SuRFNet to generate
high-resolution sparse voxel SRFs. Note that, here, SURFNet is overfitting on a small dataset in these examples and is not meant for shape
generalization.
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Input View PixelNeRF [14] VisionNeRF [7] SuRFNet (ours) Ground Truth

Figure 17. Qualititve Comparisons 1. We show different render from our SuRFNet outputs generated from a single image compared to
other methods (pixel-Nerf [14], and VisionNerf [7] ) and whole SRF ”GT" renderings. Note that the predicted views are outside the training
views distribution (zoomed in randomly). This test highlights the weakness of the 2D-based baselines [14, 7] outside the training track,
while our 3D approach maintains multi-view consistency everywhere.
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Input Views PixelNeRF [14] VisionNeRF [7] SuRFNet (ours) Ground Truth

Figure 18. Qualititve Comparisons 2. We show different render from our SuRFNet outputs generated from 3 input images compared to
other methods (pixel-Nerf [14], and VisionNerf [7] ) and whole SRF ”GT" renderings. Note that the predicted views are outside the training
views distribution (zoomed in randomly). This test highlights the weakness of the 2D-based baselines [14, 7] outside the training track,
while our 3D approach maintains multi-view consistency everywhere.
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Real Generated

Figure 19. Real images We show real images of Co3D [11] (left) and the corresponding generated views from our SRFs (rows’ top part) and
pretrained PixelNeRF [14] (rows’ bottom part).
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