Guarding the Guardians: Automated Analysis of Online Child Sexual Abuse

Juanita Puentes1 Angela Castillo1 Wilmar Osejo2 Yuly Calderón3
Viviana Quintero2 Lina Saldarriaga2 Diana Agudelo3 Pablo Arbeláez1
1Center for Research and Formation in Artificial Intelligence, Universidad de los Andes
2Aulas en Paz 3Universidad de los Andes

Abstract

Online violence against children has increased globally recently, demanding urgent attention. Competent authorities manually analyze abuse complaints to comprehend crime dynamics and identify patterns. However, the manual analysis of these complaints presents a challenge because it exposes analysts to harmful content during the review process. Given these challenges, we present a novel solution, an automated tool designed to analyze children’s sexual abuse reports comprehensively. By automating the analysis process, our tool significantly reduces the risk of exposure to harmful content by categorizing the reports on three dimensions: Subject, Degree of Criminality, and Damage. Furthermore, leveraging our multidisciplinary team’s expertise, we introduce a novel approach to annotate the collected data, enabling a more in-depth analysis of the reports. This approach improves the comprehension of fundamental patterns and trends, enabling law enforcement agencies and policymakers to create focused strategies in the fight against children’s violence.

1. Introduction

Since 2020, WeProtect [1] has reported a significant increase in the production of Child Sexual Exploitation and Abuse (CSEA) worldwide. Alarming rises have been found in the frequency of grooming cases, the volume of CSEA, the distribution of material on the dark web, and the live streaming of abuse. In 2021, the National Center for Missing and Exploited Children (NCMEC) [2] processed around 44,155 online enticement cases, increasing to 80,524 in 2022. Similarly, between 2021 and 2022, Te Protejo, a Colombian Hotline, processed nearly 1196 reports on sextortion, sexting, grooming, and sexual cyberbullying. Despite numerous studies analyzing the production of Child Sexual Abuse Material (CSAM) worldwide, there is limited evidence regarding its characteristics and dynamics in Latin America. Moreover, effective practices to aid authorities and hotlines in analyzing information to combat this crime in Spanish-speaking countries remain scarce.

Manually processing reports received by authorities or hotlines is a significant bottleneck in identifying crimes. Challenges include data variability, extensive information in aggressive conversations, and classifying cases into crime categories. It takes 25 minutes for an analyst to identify the Subject, Degree of Criminality, and Damage in a single report. Thus, the intensive exposure of analysts to harmful content is a significant concern as it can adversely impact their mental health and well-being [3]. Please refer to the Supplementary Section ?? for further details.

We propose a Large Language Model (LLM) that analyzes the information received in reports on sextortion, sexting, grooming, and sexual cyberbullying by Te Protejo. Our system analyzes, classifies, and efficiently forwards the reports to competent authorities. By reducing analysts’ exposure to harmful content, our solution enhances their mental well-being, ensuring a safer working environment.

2. Related Work

2.1. Online Violence Against Children

Recently, there has been an increase in the production of studies that analyze CSAM. In the last four years, at least 43 articles have been published detailing the sources, methods, and types of information about the production of CSAM [4]. However, none of these refer to work done specifically for the Latin American context.

Several initiatives aim to assist hotlines in efficient data collection and report processing while reducing the harm caused by analysts’ exposure to information. One of these initiatives is the Aviator Project (Augmented Visual Intelligence and Targeted Online Research), a tool that helps hotlines and law enforcement agencies process, assess, and prioritize CSAM reports. This work, supported by 16 police agencies from all over Europe, such as ZiuForensic, Web IQ, INHOPE, and the European Union Police Internal Security Fund, has shown promising advances in using visual intelligence to prioritize reports and conduct analysis more efficiently. However, up to date, there are no specific tools
We employ comprehensive data analysis to establish a robust annotation system that trains our prediction models effectively. For this purpose, we have engaged experts with a wealth of experience and expertise, qualifying them as ideal candidates for annotating complaints. Moreover, the experts produce an in-depth analysis to categorize the complaints in three dimensions following the guidelines from We Protect [1]. A complaint is associated with multiple labels within each dimension (Subject, Degree of Criminality, and Damage), allowing for a multi-class approach.

Figure 1 includes the final classification categories across the dimensions. The Subject dimension comprises a total of 994 data instances distributed across 8 classes. Among these, the sextortion class exhibits the highest data instances, totaling 299. In the Degree of Criminality, there are 943 data instances, with over half belonging to the intent of damage class. The least represented class in this dimension is commercial purpose, with only 21 data instances. Lastly, the Damage consists of a total of 702 data instances distributed across 4 classes.

The interaction between the Machine Learning (ML) researchers and the experts is crucial because the ML researchers do not possess direct access to the raw data, given its sensitivity. Therefore, the validation of the method is performed in two stages. Firstly, on the part of the ML researchers responsible for developing the LLM method, the model’s input is considered a singular row originating from a spreadsheet file. The ML researchers produce an initial prediction based on the raw input. Then, once they have the prediction, the experts in the area are in charge of analyzing the failing cases of the NLP model since they are exclusively granted access to read the complaints and conduct an exhaustive analysis of each case. The experts provide insights into the failure cases, and the ML researchers develop a strategy to improve the model. This process is done iteratively to improve the predictive model. Consequently, we highlight the significance of a multi-disciplinary team.

Data pre-processing. The dataset comprises complaints encompassing personal identifiers such as telephone numbers, ID numbers, emails, and URLs. Therefore, to ensure data anonymity and privacy, we systematically eliminate these sensitive details from the dataset.

Evaluation metrics. As our data is highly imbalanced, we perform multiclass binary classification. Thus, we implement the Precision-Recall (PR) curves to fully exploit the benefits of modeling the classification task as a detection to assess the performance of our classification problem. Furthermore, we employ the traditional F-score as the evaluation metric, which measures the harmonic mean of the precision and recall. Our experiments evaluate the F-score and mean Average Precision (mAP), calculated as the average area under the curve for all the classes.
Our model categorizes the complaints based on the different classes within each dimension. We proceed with our data using a two-fold cross-validation strategy. We randomly shuffle the dataset into two sets, ensuring that both sets are of equal size and maintain the class proportion from the original dataset in both folds. We report the average and standard deviation between our two sets.

3.2. Model

We extend the traditional classification transformer architecture by adapting the classification head according to each dimension, as shown in Fig. 2. Therefore, since we aim to fully exploit the information of each complaint to study them on each dimension, we train individual models for the three dimensions. The input to our models consists of tokenized complaints using the BERT Multilingual Tokenizer [5]. Then, we utilize a linear classification layer to assign a probability to each class. By framing this classification task as a detection problem, we use various thresholds to assign positive labels based on the output probabilities to optimize a binary cross-entropy loss. Our optimization protocol enforces the non-exclusive category prediction, which aligns well with the nature of our problem.

3.3. Learning

Given the sensitive nature of complaints of sexual abuse on children, we encounter restrictions in the amount of available data for its analysis. Thus, we employ data augmentation to alleviate the limited data of the available instances. We create augmented training datasets of different sizes by applying a data augmentation technique, specifically deleting random words. Each augmented complaint has words removed with varying probabilities between 0.05 to 0.9, enabling a more comprehensive range of experimentation and mitigating the lack of data. Thus, we optimize the Augmentation Deletion Rate (ADR) parameter, which is the likelihood of word deletion during augmentation.

4. Results

Implementation Details. We use a BERT multilingual model [5], a pretrained model on the top 104 languages with the largest Wikipedia. In that way, we could use this pretrained model for this Spanish NLP classification task.

4.1. Baseline

Table 1 and Fig. 3A-C present the baseline performance of the pretrained model without additional training. The curves for the baseline in Fig. 3A-C for the individual classes show that most of them achieve a consistent precision rate, regardless of the recall attained. The presence of a horizontal line in the PR curve, as depicted in most instances in Fig. 3A-C, indicates that the fraction of false positives is constant, which means that the model has reached its performance limit. This result suggests that the model’s discriminatory ability between positive and negative instances is restricted, resulting in a stable precision rate. Although the baseline approach is an appropriate starting point for addressing this problem, its efficacy is limited for this particular task. Thus, it is imperative to perform fine-tuning using our specific dataset during training.
4.2. Model Specialization

We conduct a subsequent experiment of specializing the model by fine-tuning it on our dataset. For each dimension (Subject, Degree of Criminality, and Damage), we determine the optimal combination of hyperparameters that maximize the mAP. Moreover, we preprocess the complaints to remove unnecessary information such as emails, URLs, and IDs. Upon comparing the fine-tuning results from Table 1 with the baseline outcomes, a notable improvement is evident, particularly in the Subject dimension. The model demonstrates enhancements in terms of mAP for all the dimensions. Figure 3D-F highlights the effectiveness of fine-tuning in enhancing the model’s classification and identification capabilities for specific classes in all dimensions.

This fine-tuning also reduces false positive rates, enabling better differentiation between classes and improved identification of relevant examples. Furthermore, our method demonstrates robustness to false negatives, as the recall remains unaffected since the model achieves higher precision without sacrificing recall, and vice versa.

Despite the improvement, the presence of class imbalance becomes apparent. For instance, in the Subject dimension, the PR curves for the Morphing class (Fig. 3D), which comprises only 11 complaints, do not exhibit improvement compared to the baseline. In the case of the Criminality Degree dimension, the precision curve for the Commercial purpose class (Fig. 3E) shows significant enhancement compared to the baseline, despite containing only 21 complaints. Nevertheless, it is crucial to consider the deviation observed across different folds for this class.

4.3. Data Augmentation

From PR curves (Fig. 3G-I), we notice a decrease in fold-wise deviation compared to previous experiments. This decrease can be attributed to data augmentation, which introduces heightened diversity and variability into the training data. We generate multiple augmented versions of each original complaint by randomly deleting words in the complaints. However, it is important to acknowledge that the limited improvement in performance indicates the need to consider the potential manifestation of overfitting. Similar to the findings observed during fine-tuning, data augmentation implies a reduction in false positives.

Considering the stochastic nature of the data augmentation procedure, which involves both random complaint selection and the deletion of random words, an inherent probabilistic bias emerges. Classes with a larger initial data volume tend to retain a greater proportion of instances after augmentation. As a result, this disparity manifests as a decline in performance for classes characterized by limited data samples, specifically the Morphing class in the Subject dimension (Fig. 3G) and the Commercial purpose class in the Damage dimension (Fig. 3H). Conversely, an inverse behavior is observed in the Damage dimension (Fig. 3I), where the augmentation of data leads to improved performance for the CSEA Production class.

5. Conclusion

This study presents a comprehensive approach encompassing a complete experimental setup and an automated tool to process complaints from online child abuse reports. In particular, we demonstrate an effective way to annotate the complaints to further comprehensively analyze them. Moreover, we show that using a specialized LLM as a prediction tool to categorize the complaints among different dimensions, thus, facilitating a deeper understanding of the dynamics of abuse. Our results show that specializing in a model with a fine-tuning procedure outperforms a traditional LLM. However, it also highlights the need for data augmentation due to the under-representation of this problem. We hope this work will enable the development of new research directed toward this critical problem to advance the knowledge of online violence against children.

6. Ethical Considerations

The sensitive nature of the data poses the main ethical consideration: the inability to make our data and methods publicly available. This limitation arises from upholding privacy and confidentiality standards to safeguard the individuals involved. However, we will share our knowledge, methodologies, and models with our partners and other hotlines to improve intervention strategies and advance our understanding of online violence against children.

Acknowledgements

This project was partially supported by the End Violence Against Children Grant. Data collection for this study was done in partnership with the Te Protejo Reporting Line managed by Red PaPaz.
References

