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Abstract

Let’s imagine you could choose the position of the cam-
era for a particular face analysis task - where would you put
it? In this work, we provide a first analysis based on syn-
thetic training data to provide evidence that this choice is
not trivial, not only dependent on the training data and dif-
ferent based on the task. We provide results for two major
face analysis tasks, face recognition and landmark detec-
tion. For our experiments, we use a 3D Morphable Model
as it provides us full control over pose, illumination, and
identity to generate idealized training data. Whilst ren-
dered images are not photorealistic we avoid any confound-
ing factors and biases from other sources (e.g. pose bias in
training data).

Our results show that the optimal camera poses are near
frontal but not exactly frontal and dependent on the task.
By comparing the results obtained by pose-specific training
set to a uniform training distribution without pose bias we
show that the accuracy for both tasks not only depends on
the bias in the training data but is actually dominated by the
difficulty of the task depending on the particular pose.

1. Introduction
Face analysis tasks are becoming more and more impact-

ful in our daily lives. For example entertainment systems

might track some facial landmarks to control games and

track the players mood or cars might recognize the state of

the driver or their identity. For all those systems we mount

cameras and the position is determined by several different

constraints, like where they are not in the way - we propose

to not only choose the position of the camera by practicality

but also by the expected performance for the face analysis

tasks based on the camera position. Capturing the face from

a position that maximizes the number of features extracted

from the face is the key to performing such tasks on faces.

We attempt to find an optimal position for the camera in a

specific setup or e.g. inside the car. We further aim to find

if this optimal position changes according to the task, or

remains the same, irrespective of the task.

Figure 1. Imagine you could choose one of those 117 cameras for

a specific face analysis task - which one would lead to the highest

accuracy? This is the core question we aim at in this paper.

To make these findings, we perform a series of ex-

periments on synthetically generated human faces. We

mainly focus on two tasks, face recognition (which is

an application of the supervised learning technique,

classification) and facial landmark detection (which is an

example of regression), where we consider faces from

different camera angles and positions. We first find the

distribution of the performance based on the camera

position for the face recognition task, and then for the facial

landmarks detection task. Then we compare how these

two results are different and how the optimal camera po-

sitions to capture a face differs according to the task at hand.

As both the tasks involved here are supervised learning

tasks, labeled data is needed. Labels are different for both,

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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classification and regression. For classification, labels are

the identities associated with each face that the classifier

has to identify. For regression, labels are the landmark

positions that have to be estimated.

To summarize, the main contributions of this work are

the following:

• We analyze the difficulty of a task in relation to camera

pose separated from any other bias in datasets.

• Our results indicate that there optimal camera posi-

tions that is not necessarily frontal.

• Our results suggest that the optimal camera position

might be dependent on the task at hand.

• We demonstrate that the dominating factor for the

reached accuracy is the task difficulty, rather than the

bias in the dataset.

The findings of these experiments can be used as a foun-

dation to build applications that will enrich the user’s ex-

perience based on face tracking or feature extraction. Ulti-

mately this for example might enhance the safety of a driver

in a vehicle through more reliable detecting emotions or

drowsiness from the driver’s face. Or detecting if the driver

is falling asleep and activating an alarm to alert the driver

or using the driver’s face for unlocking the car instead of a

key.

1.1. Related Work

We are using synthetically generated faces for face

recognition and facial landmark detection to find if the

amount of face visible to the camera influences the diffi-

culty of the task. This mainly depends on the position of

the mounted camera as the angle determines the degree

of self-occlusion. [11] performs similar experiments on

synthetically generated faces to find if the performance of

Deep Convolution Neural Networks (DCNNs) is influenced

by data set distribution like illumination conditions and

pose variations. They also investigate how well a DCNN

is able to generalize when different identities do not share

the same pose variation. They also demonstrate that

their findings on synthetic data also can be transferred to

real-world data. This work is an instance of measuring the

bias in a dataset with synthetic data that is generated in a

similar way as ours. In contrast, we do explore the bias in

performance caused by a shift of the presented distribution

(rotation).

In [13], experiments have been performed to test the

performance of deep face recognition systems on synthetic

data, real-world data, and combinations of real-world data

with synthetic data. It has been concluded that deep face

recognition systems benefit from synthetic training data

and there are no observable negative effects of pre-training

with synthetic data. Moreover, the use of synthetic data

can significantly reduce the amount of training data needed

to train these systems. [12] establishes that synthetic

data has the potential to reduce the effects of biases that

deep face recognition systems face because of real-world

training datasets. Combining synthetic data with real-world

data in the training phase helped reduce the size of the

real-world training dataset by 75 percent while still main-

taining the competitive performance of the face recognition

architecture. Also, synthetically generated datasets were

fully annotated, which made it possible to evaluate the

generalization ability of neural network architectures.

Those two works use similar synthetic data as we do but

mainly in overcoming dataset bias.

[11], [13], [12] worked with synthetically generated

facial data to study and overcome bias. They proposed the

generator we are using here and asked specific questions

about dataset bias by modifying the data distribution in a

controlled way. They observed that some results obtained

on synthetic data can be transferred reasonably well to

real-world applications. They propose, that synthetic data

has a lot of potential in training neural network architec-

tures to the effects of dataset bias. Methods to measure and

mitigate bias with synthetic data are further surveyed by

[22] focusing on bias through demographics.

Although Generative Adversarial Networks (GANs)

have been shown to be effective at synthesizing high-quality

facial images [15] [16], there are several limitations associ-

ated with GANs used for image generation. One major lim-

itation is that GANs are often not fully controllable [18],

making it difficult to specify the exact attributes of the gen-

erated images. For example, generating images with large

pose deviations may not produce accurate results, and the

level of control over camera positions is limited [20]. An-

other limitation is attribute entanglement [10] [9], which oc-

curs when the generator learns to encode multiple attributes

in one or a few latent variables. As a result, changing one

attribute of a generated image may indirectly change other

attributes, making it difficult to control or modify specific

attributes of the generated image. GANs are also highly

dependent on the quality of the data on which they were

trained. If there is some bias in the training data, the gen-

erated images may reflect those biases. Finally, GANs

can be computationally expensive to train, and generating

high-quality images can require significant computational

resources. The main reason why we suggest not using them

in our context is the missing guarantees in terms of the

multi-view consistency of such methods. There is a recent

dataset called Syn-YawPitch [7] proposing to use 3D GAN
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derived data to study pose-related bias in face recognition.

They observe a strong bias towards frontal poses which is

from our perspectly caused not only by the face recognition

models at hand, but as discussed also based on the frontal

bias in the training data for the 3D GAN generator network.

In addition to those works in the field of Computer Vi-

sion and Generative Modelling there are also interesting

connections to studies aiming to understand human vision.

As reported decades ago, the human visual system performs

better for certain poses than others. In particular a so called

three quarter view (45◦) was shown to lead to better face

recognition performance than a frontal view [2, 14, 17, 21].

This is an interesting parallel worth exploring further.

2. Methods

Our methods consist of three core components: data

generation via a parametric image generator, training of a

task-specific face analysis network on parts of the generated

data, and finally the evaluation of the resulting network. An

overview of our approach is presented in Figure 2 and in the

following, we describe those components in more detail.

2.1. Camera Specific Image Generation

For generation of our training datasets, we rely on a

3D Morphable Model [1, 5], namely the publicly avail-

able Basel Face Model 2017 [6]. This model is a statisti-

cal model for shape and color and enables explicit control

over identity, expression, pose, and illumination. Whilst our

data generation tool does not lead to photorealistic images

we can guarantee multi-view consistency and all control-

lable parameters are by design disentangled. For our in-

vestigation, we are mainly interested in controlling the pose

and we therefore randomly sample from a specific distribu-

tion of poses. For each of the camera positions we investi-

gate, we sample an individual dataset. For this data gen-

eration process, we are using the parametric-face-image-

generator, an open-source framework that was used in prior

work to measure and mitigate bias in face recognition sys-

tems [11, 13, 12]. This face generator generates synthetic

faces of different identities and can add expressions. The

resulting 3D mesh is then rendered under a pose and illu-

mination condition sampled from a predefined distribution.

This enables us to generate an arbitrary amount of 2D face

images with labels for a desired distribution (here in particu-

lar the pose distribution). We describe the used distributions

and parameters in Section 3.1. The pose is parameterized

via pitch, yaw, and roll as well as translation. We keep ev-

erything besides yaw and pitch fixed to focus on the effect of

the viewing direction, see Figure 3. The illumination condi-

tion is parameterized through Spherical Harmonics and we

deploy the Basel Illumination Prior as a distribution of nat-

ural illumination conditions.

2.2. Camera Position Specific Training

During data generation, we keep all distributions con-

stant except for the pose distribution. By only changing

pitch and yaw for each camera position we generate datasets

that have all the same distribution besides the different

viewpoints. This enables us to study the effects of differ-

ent camera positions in isolation from all other confounding

factors (e.g. pose dependent effects on learned models like

GANs due to pose biases in training data). After generating

training data for performing the said tasks for different cam-

era positions, we train and evaluate a model based on these

subsets to evaluate the task difficulty based on the gener-

ated images. For each camera position, we train a separate

model and we do so for the task of face recognition as well

as landmark detection.

2.3. Camera Position Specific Evaluation

The view captured by the camera largely depends on the

placement/position of the camera. When we consider a spe-

cific case of capturing the human face through the camera,

different positions of the camera capture it from different

angles, thus capturing different features of the face. We

evaluate training and testing accuracy/loss and study if and

how they depend on the selected pose. More details about

this analysis and especially the selected pose distributions

are covered in Section 3

The method at hand and our experiments following this

setup have been designed to find satisfactory answers to the

following questions:

• Is there an optimal camera position from where facial

features can be better extracted?

• Does this optimal position differ according to tasks,

e.g., can we have different optimal camera positions

for recognition and landmark detection?

• How important is the camera position in contrast to the

training data distribution? Does the difficulty of the

tasks differ for different poses?

2.4. Measure Task-Specific Bias

To study the effect of the camera position on the perfor-

mance of networks we need to fix a task for training and

evaluation. This enables us to see if the bias is depending

on the task at hand solely, or if the measured effect is also

caused by the data distribution. We investigate two particu-

lar tasks, namely face recognition and landmark detection.

2.4.1 Face Recognition

This is an image classification task. Here we train a neural

network to identify a face. So, the input to the neural net-

work is a set of facial images and their associated identities.
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Figure 2. Overview of our data generation and training approach.

yaw

pitch

(a) (b)

Figure 3. We rotate around vertical and horizontal axes to get pitch

and yaw variation (arrows point in negative rotation direction) (a).

The 19 facial landmarks used for our landmark detection task (b).

The neural network learns the mapping between those im-

ages and their identities. Then, it can identify the identity

of the image when only the facial image is provided (given

that the image belongs to one of the identities on which the

neural network has been trained). Face Recognition is a su-

pervised image classification task that requires labeled data.

In this case, data consists of images of the face and labels

are the identifiers associated with each image. The 3DMM

creates this data, which has facial images and associated

identities. Next, we need to train a model which can op-

erate as a face recognizer. This model should be able to

take a facial image as input and predict its identity. We cre-

ate this model using a pre-trained neural network. We use

Inception net ([19]) that has been pre-trained on the VGG

faces dataset ([3]) and use the technique of transfer learning

for training it on our data. We adapted the architecture for

this task by removing the last layer and replacing it with a

layer for 1000 classes/identities. We trained the model for

20 epochs with a batch size of 32 and used an Adam opti-

mizer with a learning rate of 0.001.

yaw pitch average samples

Figure 4. Data generation by varying yaw and pitch explained with

images from the generator variance σ = 20 for all Note: All im-

ages are generated from the same identity varying expression, illu-

mination and pose. Images in the first column are for visualization

of the mean pose only, they do not have any variance and are not

used during training.

2.4.2 Facial Landmark Detection

This is a regression task performed on facial landmark

points. We have considered 19 landmarks on the face for

this purpose. Here we train a neural network to identify

landmark positions on the face. The input is the set of fa-

cial images and landmarks associated with each face. As in

the previous task, the network learns the mapping between

faces and their landmarks. So, when we provide the image

of a face as input, we receive the landmark positions of the

face. Facial Landmark Detection is a regression task and we

train it in a fully supervised fashion. The data consists of fa-

cial images and the labels are locations of landmarks asso-
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ciated with each facial image. Then, we create a model that

is capable of taking a face image as an input and detecting

the location of landmarks in the output. We use ResNet-18

([8]) and train this model on our data. We removed the last

layer and added one with 3 · 19 = 57 nodes and trained this

new layer from scratch. We trained the model for 20 epochs

with a batch size of 32 and used an Adam optimizer with a

learning rate of 0.001.

3. Experiments
We perform four different experiments to study the effect

of the camera position on downstream applications. For all

experiments, we keep the data distribution constant but shift

it by rotating and moving the camera in 3D space. Our first

two experiments train and evaluate a network for all cam-

era positions we consider for the task of landmark detection

and face recognition. Our third experiment measures the

bias we would observe with a perfectly uniform data distri-

bution. If the difficulty of the task is strongly depending on

the position of the camera we should see this effect in all

our three experiments. The fourth experiment investigates

how reliable our experiments are in terms of noise.

3.1. Data Generation

For our first two experiments, we performed 117 exper-

iments. Each experiment was performed for one specific

camera perspective. The generated data is the same for both.

An overview of the parameters used for the generation of

the data can be found in Table 1. We use the same data dis-

tribution for test and training datasets, but of course, gen-

erate them with different seeds. For our third experiment,

we generate samples from a uniform distribution across all

poses, but for evaluation, we again take the 117 separated

test sets. We will now present how we change the individ-

ual parameters:

• Identities: The face generation framework is capable

of generating images of different identities by sam-

pling from a standard normal distribution and apply-

ing the 3D Morphable Model as a statistical model of

faces. While generating different identities, it can also

generate multiple images of the same identity. We gen-

erate 1,000 identities for each experiment. For each

identity, we generate 100 images for training and 10

images for testing.

Apart from images, the framework also generates land-

marks associated with each image. It generates 19

landmarks for every image. These landmarks give the

position of key points on the face.

While the facial images and their identities are used

for face recognition, the same facial images and their

associated landmarks are used for facial landmark de-

tection.

• Expressions: We generated for each of the face images

a random expression (following again the 3D Mor-

phable Model and a normal distribution). This intro-

duces yet another layer of complexity in the task which

hopefully enables the model to give more comparable

performance in real-world scenarios even when it is

trained on synthetic data.

• Background: for each image we sample a random

background from the DTD dataset [4].

• Yaw: While all the aforementioned parameter distribu-

tions remain the same for all the datasets that have been

generated, the yaw distribution differs across datasets.

As mentioned earlier, yaw is sampled from a Gaus-

sian distribution parametrized via the mean and vari-

ance and this parameter controls the viewing direction

and therefore visibility in terms of self-occlusion of the

face from the side view. While the variance has been

set to 20◦ in all cases, the mean differs and that’s one of

the key factors which cause differences in faces across

datasets.

For the mean of the yaw angle, we take values from

−60◦ to 60◦ which increase by 10◦ for every dataset.

So we generate datasets with values of the Yaw mean

as −60◦, −50◦, −40◦, ..., 50◦, 60◦. This distribu-

tion was used for all testing datasets and the training

datasets of experiments 1 and 2. For experiment 3

we used a uniform yaw distribution between−60◦ and

60◦

• Pitch: Similar to the yaw angle, the pitch also differs

across datasets. As mentioned earlier, the pitch is a

combination of numerical values that control the vis-

ibility of the face from the top and/or bottom view.

In the case of pitch, like yaw, the associated param-

eters are mean and variance. While the variance has

been set to 20◦ in all cases, the mean differs and that’s

one of the key factors which causes differences across

datasets.

The mean of pitch takes values from −40◦ to 40◦

which increases by 10◦ for every dataset. So we gen-

erate datasets with values of the Yaw mean as −40◦,

−30◦, −20◦, ..., 30◦, 40◦. This distribution was used

for all testing datasets and the training datasets of ex-

periments 1 and 2. For experiment 3 we used a uniform

yaw distribution between −40◦ and 40◦

As the mean of yaw and pitch varies, this variation forms

the crux of the need for creating our 117 datasets to mimic

different camera positions. Each dataset is a combination of

yaw mean and pitch mean to render images from our 1,000

identities that have a specific side view and top/bottom view.

Example faces for individual experiments and the average

of those distributions are shown in Figure 4
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The values we choose for data generation are summa-

rized in Table 1.

3.2. Experiment 1 - Face Recognition

In this task, we perform 117 experiments as mentioned

in Section 3.1. In each experiment, we train a model to

identify faces as per the identity associated with each face.

We create a model in such a way that when an image is pre-

sented as input to the trained model, corresponding identity

of the image is given as the output. Identities are defined by

numbers ranging from 0 to 999.

Each model is trained on a dataset that differs in the context

of yaw mean and pitch mean and it gives a training accuracy

and a validation accuracy. We use these results (training

and validation accuracy) to visualize the performance based

on the pose i.e., the distribution of performances given yaw

mean and pitch mean combination leading to different ac-

curacy for the face recognition task.

3.3. Experiment 2 - Facial Landmark Detection

In this task also, we perform 117 experiments. We use

the same dataset that we have used for the face recognition

task. However, here, in each experiment, we train a model

to regress 19 landmarks 2D on each face. See figure 3 (b)

for the facial landmarks which we are considering.

As for the previous task, each model is trained on a dataset

that differs in the context of yaw mean and pitch mean. Each

model gives a training accuracy and a validation accuracy at

the end of the training and testing phases respectively. We

use these results (training and validation accuracy) to visu-

alize the performance based on the pose i.e., the distribution

of performances given yaw mean and pitch mean combina-

tion leading to different accuracy for the facial landmark

detection task.

3.4. Experiment 3 - Uniform Distribution

Whilst in experiments 1 and 2 the distribution of the

training and test data was always perfectly matching, we

would now like to investigate another interesting scenario:

instead of training individual networks per experiment, we

train one large network with uniformly distributed data. We

would argue, that there should be no bias in the distribu-

tion for yaw and pitch this way. Following our hypothe-

sis that the difficulty of the task is dependent on the pose,

we would expect to get different results for different poses

and results similar to the results in experiment 1. Following

the common understanding that bias in performance domi-

nantly arises from bias in the data distribution, we would ex-

pect very comparable performance across all different test-

ing pose angles. The test set is the same as for experiment 1

but instead of training 117 individual networks, we train one

network following the protocol from experiment one except

that the training data is sampled uniformly across poses.

3.5. Experiment 4 - Variance in Results

As we ran each of the 117 sub experiments only once

we expect to see slightly different results depending on the

random seed during data generation and also during train-

ing. We would like to see how high the variation is. Since

it is computationally expensive to train all 117 networks for

experiments 1 and 2 several times, we perform this anal-

ysis only for one sub-experiment. We created 5 different

datasets for the frontal setting where yaw mean = 0 and

pitch mean = 0, where the datasets differed in seed values.

So, the identities generated for all 5 datasets were differ-

ent. Then, the results of face recognition were analyzed to

study the variance in results that arise because of the differ-

ent identities.

3.6. Assumptions

We have made the following assumptions while conduct-

ing the experiments:

• Synthetic Data

The synthetically generated faces are assumed to map

to real-world data. Since our faces lack photorealism

it is possible that they miss features that are important

for the tasks at hand. We however assume the 3D de-

pendent and low-frequency features to be dominating,

especially for the landmark detection task, and those

are well represented by our data distribution.

• Bias

Bias from the pre-trained network (Inception Net

which is pre-trained on VGG Faces) can creep into the

experiments, for example, the VGG Faces dataset has

been trained on frontal faces and we are using datasets

where not all faces are frontal. Since we only use a

pre-trained network for the face recognition task, but

not the landmark detection, we assume this bias to not

be the driving factor of our results.

4. Results
The performance evaluation of each experiment, both for

training and testing is depicted in 5. The performance eval-

uation for training the network with uniform data and then

testing it for each model is shown in 6

4.1. Experiment 1 and 2

In our first two experiment, we test the face recogni-

tion and landmark detection accuracy based on the view-

ing direction, and the results are visualized in Figure 5.

We observe very similar performance of the trained net-

works for each individual pose distribution on the training

data. This suggests that our networks reasonably well con-

verged for each cell. We do already see a slight tendency

and slightly worse performance towards larger poses and
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Parameter Value
# identities 1000

# training images per identity 100

# test images per identity 10

# training images 100000

# test images 10000

# landmarks 19

Expressions On

Background On

Yaw (camera positions) -60 to 60 with steps of 10

Pitch (camera positions) -40 to 40 with steps of 10

Yaw distributions per camera position Gaussian 0 mean 20 variance

Pitch distributions per camera position Gaussian 0 mean 20 variance

Illumination Basel Illumination Prior, empirical

Background DTD, uniform random

Face Model BFM 2017 bfm mask, no mouth
Table 1. Data generation summary: overview over all parameters and variables in the data generation process.

especially large positive pitch angles for face recognition.

The difference however becomes much more clear on the

test dataset which follows the same distribution. Here we

see, that the testing accuracy shows a much stronger bias

for non-frontal poses. Our experiments lead to a very noisy

picture of accuracies which is why we explore the variation

for a single cell in experiment 4. Besides the noise, there

is however a very clear signal in terms of higher accuracies

towards the center and lower accuracies especially towards

larger poses. We observe that the exact manifestation of

this effect is not identical for the two tasks - e.g. the effect

of large pitch seems to affect face recognition more than

landmark detection. The effect of bias due to the camera,

therefore, seems to be dependent on the task at hand. We

also observe that the best result is to be expected slightly

of-center, however the precise position is not easy to esti-

mate due to the large noise due to single network training.

4.2. Experiment 3

For experiment 3 we are testing what would happen with

a perfectly uniform training distribution. So the training

data is unbiased in terms of pose. If the camera posi-

tion plays a substantial role in the accuracy we can reach

per pose we should observe a somewhat similar effect as

we observe with the individually trained pose-specific net-

works from experiment 1. The results are visualized in Fig-

ure 6 and we again observe strong differences in the accu-

racy depending on the pose at hand. The observed results

are slightly different from those obtained on the individual

pose-dependent training sets and the optimal pose seems to

be a camera position slightly from below. As the test data is

however identical to experiment 1 we also see, that a pose-

specific network performs substantially better on the task of

face recognition than a more general one for the good poses.

Even under perfectly uniform pose distribution we however

observe a strong difference in recognition accuracy suggest-

ing that the difficulty of the task of face recognition indeed

depends on the camera position.

4.3. Experiment 4

We observe a high level of noise in our measurements of

5. We were therefore investigating how large the noise is

that we would expect. We ran the face recognition experi-

ment 5 times and retrieved a training accuracy of 92.88 on

average with a standard deviation of 2.13 and a testing ac-

curacy of 88.96 with a standard deviation of 3.72. This level

of noise is observable in the visualizations at hand but we

believe that whilst the individual cells are subject to noise

we can still retrieve valuable information from the overall

picture. If we would increase the compute by a factor of

5 we would get a clearer picture, that would allow to iden-

tify the exact best position, but since our data is anyway

synthetic we do not think this gives us additional important

insights.

4.4. Limitations

The generated faces are far from being photo-realistic.

Besides the realism gap arising from the use of 3DMMs,

there are also no realistic hair, occluders like glasses, or re-

alistic backgrounds. This domain gap could influence the

result of our analysis. In contrast to state-of-the-art GAN-

based data generators, we however have full control over

the data generation, including full pose variation and illu-

mination variation (compare Section 1.1). In future work,

we plan to demonstrate that the effect we show here on syn-

thetic data also arises on more realistic data. With our sim-

plistic model, we first wanted to demonstrate that the effect

and influence of the camera pose exists, besides the bias
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Figure 5. Performance Visualization of experiments 1 and 2 top left: face recognition-training accuracy, top right: face recognition-

testing accuracy, bottom left: landmark detection-training loss, bottom right: landmark detection-test loss.

Figure 6. Testing accuracy for face recognition trained on uni-

formly distributed data set (experiment 3). Training accuracy is

74.82 percent.

in the training data and next we would like to demonstrate

that it also arises in real-world settings. Another limita-

tion of our analysis is the high computational demand to

perform our evaluation. Whilst the method to generate the

data can be easily improved, we need to train networks per

pose combination which scales quadratically with the de-

sired resolution of the evaluation grid in yaw and pitch di-

rection. In addition, the results are noisy due to the random

nature of the optimization process, ideally, every combina-

tion would need to be trained multiple times which we de-

cided to omit (as we can still derive global trends).

5. Conclusion

We demonstrate on ideal synthetic data the effect of task

difficulty dependent on the position of the camera. Our ex-

periments suggest that the task difficulty imposed by the

camera position is the dominating factor for the reached ac-

curacy and is stronger than the priorly reported pose bias

observed in datasets. Our experiments also suggest that the

analysis is dependent on the task at hand, which means the

analysis has to be done on a per-task basis. For both tasks

at hand, we observe a slightly non-frontal pose to be ideal,

which is not very surprising as it gives us more depth cues

than a purely frontal image and therefore more 3D infor-

mation. In future work, we will investigate if our findings

transfer to photorealistic images and if our method of anal-

ysis can be scaled.
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