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Abstract

Face recognition systems have significantly advanced
in recent years, driven by the availability of large-scale
datasets. However, several issues have recently came up,
including privacy concerns that have led to the discontinu-
ation of well-established public datasets. Synthetic datasets
have emerged as a solution, even though current synthe-
sis methods present other drawbacks such as limited intra-
class variations, lack of realism, and unfair representa-
tion of demographic groups. This study introduces GAN-
DiffFace, a novel framework for the generation of syn-
thetic datasets for face recognition that combines the power
of Generative Adversarial Networks (GANs) and Diffusion
models to overcome the limitations of existing synthetic
datasets. In GANDiffFace, we first propose the use of GANs
to synthesize highly realistic identities and meet target de-
mographic distributions. Subsequently, we fine-tune Diffu-
sion models with the images generated with GANs, synthe-
sizing multiple images of the same identity with a variety of
accessories, poses, expressions, and contexts. We generate
multiple synthetic datasets by changing GANDiffFace set-
tings, and compare their mated and non-mated score dis-
tributions with the distributions provided by popular real-
world datasets for face recognition, i.e. VGG2 and IJB-C.
Our results show the feasibility of the proposed GANDiff-
Face, in particular the use of Diffusion models to enhance
the (limited) intra-class variations provided by GANs to-
wards the level of real-world datasets.

1. Introduction

In recent years, the development of face recognition

technology has experienced a significant increase in the use

of synthetic datasets. This trend has been facilitated by the

proposal of numerous approaches for the generation of syn-

thetic faces [35], resulting in an augmentation and diversifi-

cation of the datasets for face recognition [47, 26].
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Figure 1: Overview of our GANDiffFace framework based

on the combination of GAN and Diffusion models. GAN-

DiffFace creates synthetic datasets for face recognition with

the properties listed in blue. From each identity synthesized

with the GAN-based module, a personalized Diffusion-

based module generates images with realistic intra-class

variations that, once filtered, will compose the final dataset.

Synthetic datasets provide several advantages compared

to real-world datasets [19]. Firstly, they offer a promis-

ing solution to some privacy concerns associated with real

datasets, which are usually based on the collection of face

images of individuals without their knowledge or consent

from various online sources [31]. Secondly, synthetic face

generators provide potentially infinite data. This is of par-

ticular importance because established datasets have been

dismissed due to privacy concerns [16], and regulatory

frameworks such as the EU-GDPR require the informed

consent of individuals prior to the collection and use of

personal data [43]. Finally, if the synthesis process is

controllable, datasets with desired demographic character-

istics (and labels for free) can be easily obtained, unlike

real-world datasets that unequally represent diverse demo-

graphic groups [30], among other aspects.

Among generative models, Generative Adversarial Net-

works (GANs) have been widely used to synthesize face

images due to their ability to learn complex distributions

and generate high-quality images of human faces [20, 39],

especially the recent version of StyleGAN3 [22, 2]. How-

ever, GANs generate images based on the patterns learned

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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from the training data, with limited control over the gen-

erated features, and possible biases towards certain demo-

graphic groups over-represented during training [27]. To

tackle this issue, some methods have been proposed in the

literature to modify attributes of synthetic face images, i.e.
pose, illumination, and demographics. Target attributes can

be injected into the generative component of GANs [7, 12],

or alternatively the latent structure of GANs, i.e. their in-

ternal representation of face images, can be properly ma-

nipulated to meet the target attributes [41, 46]. However,

GAN-generated images have been found to exhibit insuf-

ficient variability between the images of the same individ-

ual (i.e. intra-class variation), in comparison to real-world

datasets [8]. This affects the performance of face recogni-

tion models trained with synthetic data and evaluated with

real data, as observed in [33].

More recently, Diffusion models have gained popularity

and outperformed GAN models in multiple tasks, includ-

ing image synthesis [10]. A Diffusion model consists of

a Markov chain that gradually adds random noise to data

and learns to reverse it, to generate the desired output from

noise [17]. Diffusion models can shape their outputs ac-

cording to text or images [44], and generate a wider variety

of images compared to GAN models [25]. However, un-

like GANs, Diffusion models do not learn explicit latent

representations of face images, making their demographic

attributes and intra-class variations less controllable [10].

In this study, we propose a novel framework called GAN-
DiffFace to generate synthetic datasets for face recognition,

by combining the advantages of both GAN and Diffusion

models (Figure 1). We use StyleGAN3 to generate synthetic

identities, and create six different images for each identity

by manipulating their pose, expression, and illumination at-

tributes in the latent space. For attribute manipulation, we

follow the approach (detailed in Section 3.1) proposed by

a previous work that investigates the use of automatically

generated synthetic datasets for benchmarking face recogni-

tion systems [8]. We observe that such synthetic datasets are

not suitable for other tasks, e.g. the training of face recogni-

tion systems, because of their limited intra-class variations.

Hence, we propose the use of DreamBooth, a recent frame-

work for the “personalization” of Diffusion models [37], to

generate more realistic intra-class variations. Given as in-

put the six images previously generated for a specific sub-

ject, DreamBooth fine-tunes a pretrained text-to-image Dif-

fusion model to bind a unique identifier with that subject.

The unique identifier allows to synthesize fully-novel pho-

torealistic images of the subject contextualized in different

scenes, poses, views, and lighting conditions, by leveraging

the semantic prior embedded in the model [37].

The main contributions of the study are:

• Proposal of GANDiffFace, a novel framework for the

generation of synthetic datasets for face recognition.

GANDiffFace generates photorealistic images of syn-

thetic identities with enhanced intra-class variations.

Additionally, specific demographic distributions can

be obtained by manipulating the latent space of Style-

GAN3 during identity generation.

• Two different datasets with the same synthetic identi-

ties are generated at different steps of GANDiffFace:

i) with the GAN-based module alone, and ii) with the

combination of GAN-based and Diffusion-based mod-

ules. We provide a direct comparison (based on the

same identities) between the two synthetic datasets,

and further compare them to real-world datasets.

• We make available the synthetic dataset generated with

GANDiffFace,1 characterized by easily controllable

and realistic intra-class variations. Our dataset rep-

resents equally balanced demographic groups, defined

in terms of race, age, and gender, and contains labels

of several face attributes. Hence, it enables the train-

ing/testing of multiple facial analysis applications.

The remainder of this work is organized as follows:

in Section 2 we describe related works that use synthetic

datasets for face recognition. In Section 3 we describe the

modules of our proposed GANDiffFace framework. In Sec-

tion 4 we provide an evaluation on our synthetic datasets,

and in Section 5 we discuss limitations and future works,

drawing the conclusions of this work.

2. Related works
Numerous technologies have been proposed to generate

synthetic datasets for face recognition. The applicability of

synthetic datasets to face recognition has been investigated

in [47], to compensate for the lack of publicly available

large-scale test datasets, and in [5], to provide a taxonomy

and further discussion. In Table 1, we compare the most

relevant synthetic datasets for face recognition proposed in

the literature.

StyleGAN2 is used to generate synthetic identities in [8].

With the property of linear separability of StyleGAN2’s

latent space, multiple images of the original identities are

generated while changing three attributes, i.e. illumination,

pose, and expression. Linear separability allows to find a

hyperplane in the latent space that separates populations of

latent vectors according to different values for a specific at-

tribute. The normal vector to this hyperplane represents the

direction along which latent vectors, i.e. the representations

of synthetic images in the latent space, can be moved to

modify the specific attribute. The approach proposed in [8]

presents some limitations addressed by our GANDiffFace,

namely the demographic bias inherited from StyleGAN2,

and the limited intra-class variations generated.

1https://github.com/PietroMelzi/GANDiffFace

3087



Method Category Realism Controllable
demographics

Intra-class
variations

Fully
synthetic

Latent space [8] GAN high low low yes

HDA-SynChildFaces [11] GAN high high low yes

SYNFace [33] GAN high low low no

SFace [4] GAN high low low yes

DigiFace-1M [3] 3D model low medium high yes

DCFace [24] Diffusion medium low high no

GANDiffFace (ours) GAN + Diffusion high high high yes

Table 1: Overview of the synthetic datasets for face recognition applications proposed in the literature.

In an analogous way, the linear separability of Style-

GAN3’s latent space is exploited to generate a large-

scale synthetic dataset of children’s faces, named HDA-
SynChildFaces [11]. Compared to the previous work, in

HDA-SynChildFaces the latent space is manipulated during

identity generation to balance the race distribution of the

dataset. The work reveals that children consistently perform

worse than adults in various face recognition systems.

SYNFace proposes the use of DiscoFaceGAN for the

synthesis of face images, a disentangled learning scheme

that enables precise control of targeted face properties such

as identity, pose, expression, and illumination [33]. Dis-

coFaceGAN generates realistic face images by sampling

random noise from multiple normal distributions, each one

independently controlling a different face attribute. SYN-
Face identifies in poor intra-class variations the reason of

the performance gap existing between face recognition sys-

tems trained with synthetic and real datasets. To mitigate

it, the intermediate states of two synthetic identities mixed

together are considered as novel identities. SYNFace gener-

ates mostly frontal-view images, the identity preservation or

variation of mixed identities is not evaluated, and a further

mix with real images is required to bridge the gap between

synthetic and real world data.

In SFace a privacy-friendly synthetically generated face

dataset is proposed, based on the training of StyleGAN2-

ADA with real datasets, and the setting of identity labels as

class labels to create synthetic data [4]. Hence, a 1:1 corre-

spondence can be observed between real and synthetic iden-

tities, with the consequent sharing of face attributes (but not

identity). SFace provides an unrealistic mated score dis-

tribution, shifted towards the non-mated distribution, and

unlike other GAN-based methods maintains a tight corre-

spondence between the synthetic identities and the real ones

used during training.

DigiFace-1M, a large-scale synthetic dataset obtained by

rendering digital faces with a computer graphics pipeline,

is proposed for face recognition in [3]. Each identity of

DigiFace-1M is defined as the unique combination of fa-

cial geometry, texture, eye color, and hair style, while other

parameters (i.e. pose, expression, environment, and camera

distance) are varied to render multiple images. With aggres-

sive data augmentation, this work significantly reduces the

synthetic-to-real domain gap, establishing the new state-of-

the-art performance for face recognition models trained on

synthetic data. Furthermore, this method does not rely on

real data for training the generative model, differently from

GAN models. However, we observe some limitations in

DigiFace-1M: the textures of the synthetic images appear

unrealistic, and the demographic distribution of the syn-

thetic dataset is not analyzed.

More recently, a Diffusion model called DCFace has

been proposed for synthetic face recognition [24]. DCFace
is composed of: i) a sampling stage for the generation of

synthetic identities, and ii) a mixing stage for the genera-

tion of face images whose identity comes from the sampling

stage and the style is selected from a “style bank” of images.

Both components are based on Diffusion models, showing

considerable ability to generate unique and diverse iden-

tities. Compared to SYNFace and DigiFace-1M, DCFace
claims to provide better intra-class variations, but relies on

real face images for the “style bank”. While synthetic data

could in principle also be used for the “style bank”, this may

reduce intra-class variations in the generated dataset. We

raise criticism about the use of real data, as newly generated

synthetic images contain sharp details from the real images

used as style reference and the method is not fully synthetic.

Furthermore, with DCFace specific face attributes cannot be

manipulated either during the sampling or mixing stages.

As of today, synthetic datasets based on Diffusion mod-

els are promising, but still in a primitive stage. Our pro-

posed GANDiffFace framework combines the advantages

of GAN models, i.e. generation of highly realistic faces and

control of the latent space, with enhanced intra-class varia-

tions achieved by recent Diffusion models.

3. Proposed method
The graphical representation of our proposed GANDiff-

Face framework is provided in Figure 2. GANDiffFace con-

sists of two modules: the first one dedicated to the synthesis

of identities, based on StyleGAN3 [22] and transformation

in its latent space (Section 3.1), and the second one respon-

sible for the creation of realistic intra-class variations, based

on DreamBooth [37] (Section 3.2).
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(a) The GAN-based module of GANDiffFace. Given a seed and target demographic attributes, multiple images of the same identity are

provided with GAN-based (limited) intra-class variations.

GAN-based intra-class 
variations (xyz person)

Training 
(Fine-tune 

Stable 
Diffusion)

List of prompts:
xyz person in the park, wearing 

glasses, turned at right, surprised …

Inference
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Diffusion-based intra-class variationsDiffusion-based 
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Regularization images (class: person)

Filtering

(b) The Diffusion-based module of GANDiffFace. Given a few images with GAN-based (limited) intra-class variations (a) of the synthetic

identity xyz, a set of images of the class person for regularization (generated by Diffusion model), and a list of prompts, multiple images

of the same identity are provided with augmented Diffusion-based intra-class variations.

Figure 2: Graphical representation of the GAN-based (a) and Diffusion-based (b) modules of the GANDiffFace framework.

3.1. GAN-based module

Identity generation. We first generate an initial random

set of 256,000 synthetic images with StyleGAN3 (pre-

trained with FFHQ dataset [23]), and label them with Fair-

Face, a classifier of demographic attributes (i.e. race, gen-

der, and age) [21]. The distributions of demographic at-

tributes obtained in the random set are reported in Figure

3, highlighting the bias present in StyleGAN3. We remove

from the initial set images with poor quality as well as those

belonging to young subjects. For quality assessment we use

MagFace with backbone iResNet100, a state-of-the-art sys-

tem that learns feature embeddings whose magnitudes rep-

resent face sample quality [29]. We eliminate the 10% of

images with the lowest magnitude, that usually contain ar-

tifacts, sunglasses, or belong to children. Then, we also

eliminate images of people in the age intervals 0-2, 3-9, and

10-19, as we focus only on adult identities.

Face attribute representation. A framework to interpret

the disentangled face representation learned by StyleGAN

and study the properties of the facial semantics encoded in

its latent space was initially proposed in [41]. The frame-

work is based on the training of linear Support Vector Ma-

chines (SVMs) in the latent space to separate two distinct

populations of latent vectors according to a binary target

attribute. The normal vector to the resulting hyperplane

Figure 3: Race (W=White, B=Black, LH=Latino Hispanic,

SA=Southeast Asian, EA=East Asian, ME=Middle Eastern,

I=Indian), age, and gender (M=male, F=Female) distribu-

tions in the initial random set of 256,000 identities gener-

ated with StyleGAN3 [22] and labelled with FairFace [21].

boundary of the trained SVM represents the direction to fol-

low in the latent space to edit the target attribute of face im-

ages. This approach has proved successful even in the latent

space of StyleGAN2 [8] and StyleGAN3 [11].

In this work, we label our synthetic dataset according

to pose (yaw and pitch) with 3DDFA V2 [15, 14], expres-

sion (neutral, happy, sad, surprise, disgust, anger, contempt)

with DMUE [40], and illumination by comparing the pixel

intensity of the right and left half of face images. We also

consider the labels provided by FairFace for gender, age,

and race. For each attribute of interest, we represent two

populations with an equal number of latent vectors, selected
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Attribute Number
of images

Validation
accuracy

Average
distance

Pose: Yaw 100,000 100% 1.39

Pose: Pitch 100,000 99% 0.98

Expression: Happy 13,390 100% 1.11

Expression: Contempt 11,014 92% 0.46

Expression: Surprise 8,328 89% 0.53

Expression: Disgust 4,436 95% 0.84

Expression: Sad 2,606 85% 0.45

Expression: Anger 2,440 91% 0.74

Illumination 15,000 72% 0.18

Gender 100,000 100% 1.33

Age 37,736 96% 0.85

Race: White 64,846 100% 1.00

Race: Latino-Hispanic 33,762 98% 0.92

Race: East Asian 12,964 100% 1.12

Race: Middle Eastern 13,112 92% 0.57

Race: Indian 8,244 100% 1.59

Race: Southeast Asian 5,180 100% 1.43

Race: Black 5,356 100% 1.92

Table 2: List of boundaries calculated in this work, with

information about each SVM training. Average distance is

the distance of latent vectors from the hyperplane boundary.

at the two extremes of the score distribution of the target at-

tribute. We train each SVM with a maximum number of

100,000 latent vectors, depending for each attribute on the

amount of data available to represent populations. In case

of categorical attributes, i.e. expression and race, numer-

ical values are provided respectively by DMUE and Fair-

Face for all the possible categorical attributes. Hence, we

train multiple one-vs-one SVMs to separate each expression

from the neutral one, and multiple one-vs-all SVMs for each

different race. In Table 2 we report all the boundaries cal-

culated in this work, providing additional information about

the training of each SVM. High validation accuracy demon-

strates the goodness of our boundaries, except for illumina-
tion that turns out to be unreliable. The entire training of

boundaries is carried out exclusively with synthetic data.

Latent space transformation. The approach used to

modify face attributes by applying transformations in the

latent space has been described in detail in previous works

[8, 11]. For clarity, here we only summarize its key points.

We can transform a latent vector w, that represents a face

image in the latent space of StyleGAN3, to modify its at-

tribute a according to the following operation:

wa = w + α · na, (1)

where na is the normal vector to the hyperplane that sepa-

rates populations according to the attribute a, α is the degree

of the transformation, and wa is the resulting latent vector,

in which the attribute a results modified according to the di-

Indian
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60-69

White
Female
40-49

Random 
sampling

Pose 
neutral

Expression 
neutral

Demographic 
transform GAN-based intra-class variations

Target 
demographic 

attributes

Latino-Hisp.
Female
20-29

Figure 4: Sequence of transformations to generate iden-

tities with target demographic attributes and GAN-based

intra-class variations. Initial identities with demographic at-

tributes similar to the target ones have been selected.

rection of the transformation. To neutralize a latent vector

w with respect to the attribute a, it is possible to project w
onto the hyperplane boundary of attribute a, as follows:

wna
= w − (wTna) · na, (2)

where wna
is the resulting neutralized latent vector, in

which the attribute a results in a neutral condition. By

combining the operations of transformation and neutraliza-

tion to modify the demographic attributes of face images

(i.e. race, age, and gender), an arbitrary large number of

identities can be generated to represent target demographic

groups. In the following we describe the sequence of opera-

tions required to generate identities with target demographic

attributes, and provide (limited) intra-class variations with a

GAN-based approach. In Figure 4, we also provide graphi-

cal examples of these operations for random identities.

1. Pose neutralization: the pose of the random identities

generated with StyleGAN3 is neutralized, by project-

ing their latent vectors on the hyperplane boundaries

relative to yaw and pitch.

2. Expression neutralization: the expression of the ran-

dom identities is neutralized, by projecting their la-

tent vector on the hyperplane boundary relative to the

current expression of each identity, and subsequently

moving the resulting latent vectors in the direction of

neutral expression (opposite direction with respect to

current expression).

3. Demographic-specific transformation: the latent vec-

tors (neutralized according to pose and expression) are

modified by applying transformations in the direction

of the boundaries of interest. The pre-selection of ran-

dom identities with demographic attributes close to the

target ones may help to prevent transformations from

estimating latent vectors outside of the StyleGAN3

distribution of faces [11]. We consider 70 different de-

mographic groups, obtained by combining the seven
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races, five adult age intervals, and two genders re-

ported in Figure 3. In total, we generate at this step

700 different identities (10 identities for each of the 70
demographic groups).

4. GAN-based intra-class variations: the latent vectors

of demographic-specific identities can be further mod-

ified according to the boundaries of pose, expression,

and illumination, to generate (limited) intra-class vari-

ations for each synthetic identity.

We observe that kinship ties, multiethnic unions, and

population aging can be simulated by applying different de-

mographic transformations to the same original identity.

3.2. Diffusion-based module

Text-to-image models enable high-quality and diverse

synthesis of images based on text prompts. They rely on

their strong semantic prior, learned from a large collection

of image-caption pairs, to bind a word with various images

in different poses and contexts [34, 38]. However, these

models lack the ability to preserve the identity of a subject

consistently across synthesized images. To overcome this

issue we consider Dreambooth, a novel framework that fine-

tunes text-to-image models (in this case Stable Diffusion

[36]) to bind new words with specific subjects, and synthe-

size novel renditions of subjects in different contexts while

maintaining their distinctive features [37].

Training. We use the images generated by the GAN-

based module of GANDiffFace to fine-tune Stable Diffu-

sion, a state-of-the-art Diffusion text-to-image model [36].

We apply Dreambooth to bind a unique token (we use xyz)

with a specific synthetic identity, and implant it into the out-

put domain of Stable Diffusion. To refer to the identity, we

use text prompts containing the token xyz followed by the

class name of the identity, in our case person. Hence, the

minimum text prompt to refer to the identity is: “xyz per-

son”. The class name (i.e. person) enables the model to

use its prior knowledge of the class, and an additional class-

specific prior preservation loss helps to prevent the model

to associate the class with the specific identity. These com-

ponents serve as regularization, as they alleviate overfitting

and encourage diversity in the resulting images [37].

Previous studies highlighted the importance of parameter

settings to fine-tune the Stable Diffusion model, especially

in case of the person class [1]. We fine-tune Stable Dif-

fusion with 6 input images for each synthetic identity, 200

images of the class person for regularization (generated by

Stable Diffusion itself), and for 1,000 epochs, also allowing

the fine-tuning of the text encoder. Given the high num-

ber of identities in our dataset and possible interferences

between tokens in the vocabulary, we fine-tune a specific

Stable Diffusion model for each synthetic identity.

-0.01 0.15 0.16

0.26

0.30 0.40 0.41

0.51 0.58 0.63

average 
similarity 

score
0.19

0.43

0.27

0.33

0.21

0.11

GAN 
images

Diffusion images

Figure 5: Identity preservation scores, obtained for each im-

age on the right by averaging their similarity scores with the

GAN images on the left. Threshold tip regulates the intra-

class variations provided by GANDiffFace.

Inference. Once fine-tuned with DreamBooth, the Stable

Diffusion model can generate images of the specific syn-

thetic identity in multiple contexts, according to the pro-

vided prompts. To generate synthetic images with realis-

tic intra-class variations, we evaluate different categories

of prompts: accessorization, advanced poses, advanced ex-

pressions, and recontextualization. Examples of prompts

are: “xyz person wearing scarf”, “close photo of xyz per-

son at the beach”, “skeptical xyz person”, and “full body

xyz person with accurate details of face in an indoor place”.

We observe that Stable Diffusion allows to specify nega-

tive prompts, to prevent the generation of undesired images.

Given the large variety of datasets used to train Stable Dif-

fusion, for the entire inference process we specify the fol-

lowing negative prompt: “photo with the style of painting,

comics, drawing, or containing text”.

Filtering. The quality of the images generated with text-

to-image Diffusion models highly depends on the correct

specification of text prompts [45]. In our inference phase,

we consider some prompts that may work well for most but

not all the identities, to enhance the intra-class variations

resulting in our dataset. For this reason, an important com-

ponent of our GANDiffFace framework is the filtering of

the generated images, which is carried out in three stages:

1. Face detection: we filter out images in which the face

detector SCRFD-10G [13] detects no face.

2. Identity preservation: we extract ArcFace embeddings

(backbone iResNet100) [9] from synthetic images gen-

erated with both the GAN-based module only and the
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entire GANDiffFace framework. Then, for each syn-

thetic image generated with GANDiffFace, we cal-

culate the average of its cosine similarity with the 6

GAN images that represent the same identity (previ-

ously used to fine-tune the Stable Diffusion model).

We filter out images if the similarity score is below

a threshold tip = 0.3. We note that similarity scores

are computed between images of different domains, al-

lowing the removal of outliers images generated with

the Diffusion-based module, and no comparison is car-

ried out between images of the same domain. In Fig-

ure 5, we include examples of the average similarity

scores between GAN and Diffusion images for a ran-

dom identity.

3. Gender preservation: we label the remaining images

by gender with FairFace, and filter out images with a

gender different from the corresponding GAN images.

4. Evaluation

This section analyzes the similarity scores obtained with

four versions of our synthetic dataset, in order to provide a

comparison with the score distributions of existing synthetic

and real-world datasets used for face recognition.

4.1. Synthetic datasets

We generate four datasets selecting different settings of

our GANDiffFace framework, all of them containing the

same 700 synthetic identities. We only use the GAN-based

module of GANDiffFace to generate a synthetic dataset pro-

vided with GAN-based (limited) intra-class variations. We

use the entire GANDiffFace with identity preservation fil-

ter tip = 0.3 (default) to evaluate the impact of the Diffu-

sion model on intra-class variations. Then, we use the entire

GANDiffFace framework with tip = 0.2 and tip = 0.4 to

evaluate different intra-class variations. Additionally, we

consider subsets of two synthetic datasets, i.e. SFace [4]

and DigiFace-1M [3]. With the latter, we provide a compar-

ison with a dataset based on 3D model.

4.2. Real-world datasets

We consider two real-world datasets widely used for face

recognition, VGGFace2 [6] and IJB-C [28]. VGGFace2

is a large-scale dataset containing images from the web

of around 9, 000 identities, with large variations in pose,

age, illumination, ethnicity and profession. IJB-C contains

around 3, 000 identities, with focus on occlusions and di-

versity of ethnicity and profession. According to IJB-C an-

notations, we remove multiple images taken from the same

video and images with small faces. Both datasets have been

discontinued, underlining the necessity of the generation of

synthetic datasets with realistic intra-class variations.

For a fair comparison with our synthetic datasets, we fil-

ter out real images with a MagFace quality lower than 24.45
[29]. This is the threshold used to eliminate the 10% of im-

ages with the lowest magnitude during GANDiffFace iden-

tity generation (Section 3.1). We are interested in the gen-

eration of datasets with high quality images. Datasets with

low quality images can be obtained with data augmentation,

and their evaluation is out of the scope of this work.

4.3. Similarity score distributions

For each identity in real or synthetic datasets, we ran-

domly select 10 images and generate 20 mated and 20 non-

mated comparisons, and calculate the cosine similarity of

their ArcFace (backbone iResNet100) embeddings [9] (Fig-

ure 6). We use ArcFace as it is open source and widely

used for face recognition. Then, we measure the diversity

between synthetic and real score distributions, the latter as

reference, with Kullback–Leibler (KL) divergence.

In Table 3 we report the mean and standard deviation of

mated and non-mated comparisons in the different datasets,

as well as the number of identities. The reason behind the

limited size of our GANDiffFace datasets is the high com-

putational cost required for generation, but larger datasets

can be produced. Analyzing the results, the use of a Diffu-

sion model reduces the mean of mated scores from 0.67 (ob-

tained with GAN-based module only) to 0.51, for tip = 0.2.

This value is closer to the means of real datasets, i.e. 0.52

for VGGFace2 and 0.57 for IJB-C. The IJB-C mean is af-

fected by a peak in the score distribution for values close

to 1, due to the comparison of images taken from the same

video and not detected in the annotation file. According to

Table 4, GANDiffFace with tip ≥ 0.3 reproduces mated

distributions similar to the real ones (KL = 0.16 from VG-

GFace2). We observe that the mated distribution of the

GAN-based dataset is very far from the VGGFace2 one

(KL = 0.69), while the mated comparisons with high score

in IJB-C help to reduce KL divergence to 0.28 for GAN-

based and 0.09 for GANDiffFace with tip = 0.4.

For non-mated comparisons, we observe that synthetic

datasets present distributions skewed towards positive val-

ues, differently from real datasets (Figure 6). KL divergence

is generally bigger for synthetic non-mated distributions,

showing difficulty to reproduce realistic inter-class varia-

tions (Table 4). While no significant difference can be ob-

served between the non-mated distributions of GAN-based

and GANDiffFace (tip = 0.3) datasets, KL divergences are

slightly higher for tip = 0.4, and decrease with tip = 0.2:

from 0.48 to 0.42 with regard to VGGFace2, and from 0.43

to 0.37 with regard to IJB-C. This may be due to the in-

clusion in the synthetic dataset of images less similar to the

GAN-based ones, which showed a slightly positive mean

for non-mated comparison scores.

Finally, we observe worse score distributions for the syn-
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Figure 6: Similarity score distributions obtained from mated and non-mated comparisons randomly selected from our syn-

thetic datasets (first row), and other synthetic, SFace and DigiFace-1M, and real-world, VGGFace2 and IJB-C, datasets

(second row).

Dataset Type Id. Mated scores Non-mated scores
GAN-based Syn 700 0.67± 0.14 0.08± 0.10

GANDiffFace

(tip = 0.4)
Syn 700 0.59± 0.12 0.08± 0.09

GANDiffFace

(tip = 0.3)
Syn 700 0.55± 0.15 0.08± 0.09

GANDiffFace

(tip = 0.2)
Syn 700 0.51± 0.17 0.07± 0.09

SFace Syn 411 0.18± 0.13 0.02± 0.08
DigiFace-1M Syn 2,000 0.47± 0.15 0.12± 0.09
VGGFace2 Real 8,515 0.52± 0.16 0.01± 0.07

IJB-C Real 2,557 0.57± 0.17 0.01± 0.07

Table 3: Number of identities and means of mated/non-

mated score distributions of synthetic and real datasets.

thetic SFace and DigiFace-1M datasets compared to the

ones provided by GANDiffFace, with Equal Error Rates

(EERs) about twice the real ones. This is reflected in higher

KL divergences for mated (in case of SFace) and non-mated

(in case of DigiFace-1M) score distributions, showing that

these datasets fail to reproduce realistic intra and inter-class

variations. However, SFace provides the best non-mated

score distribution for synthetic datasets, with KL = 0.18
from VGGFace2 and KL = 0.11 from IJB-C.

5. Conclusion
This study has proposed GANDiffFace, a novel frame-

work that combines the advantages of GAN and Diffusion

models to generate synthetic datasets for face recognition

with some desired properties. The use of a GAN model

for identity generation, i.e. StyleGAN3, allows to synthe-

size images of human faces with high realism, and manip-

ulate the latent space to provide a fair representation of 70
demographic groups. The addition of a Diffusion model,

i.e. Stable Diffusion, personalized for specific identities

Dataset Mated scores Non-mated scores EERVGG2 IJB-C VGG2 IJB-C
GAN-based 0.69 0.28 0.48 0.42 1.49%

GANDiffFace

(tip = 0.4)
0.16 0.09 0.52 0.46 1.25%

GANDiffFace

(tip = 0.3)
0.16 0.16 0.48 0.43 2.74%

GANDiffFace

(tip = 0.2)
0.23 0.28 0.42 0.37 5.11%

SFace 1.72 2.13 0.18 0.11 22.53%

DigiFace-1M 0.21 0.41 1.05 1.02 7.92%

VGGFace2 - 0.11 - 0.01 4.51%

IJB-C 0.15 - 0.01 - 3.22%

Table 4: KL divergences of the distributions of each dataset

from the real ones provided by VGGFace2 and IJB-C.

with DreamBooth, allows the fully synthetic generation of

a dataset with realistic intra-class variations.

A limitation of GANDiffFace consists in the high com-

putational cost required to fine-tune identity-specific Diffu-

sion models. This was the main reason for the generation

of 700 identities, but many more can be generated. Also,

Diffusion images present some artifacts observable at hu-

man level. Nevertheless, they usually affect parts of human

bodies such as hands that are cut out for face recognition.

In future works, we plan to use the synthetic dataset

generated with GANDiffFace to deploy face recognition

systems, given its desired properties of realistic intra-class

variations and fair representation of multiple demographic

groups. Also, future works can focus on i) reducing the

KL divergence from non-mated score distributions of real

datasets, to reproduce more accurately real-world inter-

class variations, and ii) improving the quality of DeepFakes

[35, 42] and attacks [18, 32] through GANDiffFace.
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Klepp, K Pöppelmann, A George, S Marcel, and C Busch.

Attacking Face Recognition with T-shirts: Database, Vulner-

ability Assessment and Detection. IEEE Access, 2023. 8

[19] Indu Joshi, Marcel Grimmer, Christian Rathgeb, Christoph

Busch, Francois Bremond, and Antitza Dantcheva. Syn-

thetic data in human analysis: A survey. arXiv preprint
arXiv:2208.09191, 2022. 1

[20] Amina Kammoun, Rim Slama, Hedi Tabia, Tarek Ouni, and

Mohmed Abid. Generative adversarial networks for face

generation: A survey. ACM Computing Surveys, 55(5):1–37,

2022. 1

[21] Kimmo Karkkainen and Jungseock Joo. FairFace: Face

attribute dataset for balanced race, gender, and age for

bias measurement and mitigation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1548–1558, 2021. 4

[22] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,

Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free

generative adversarial networks. Advances in Neural Infor-
mation Processing Systems, 34:852–863, 2021. 1, 3, 4

[23] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 4

[24] Minchul Kim, Feng Liu, Anil Jain, and Xiaoming Liu. DC-

Face: Synthetic Face Generation with Dual Condition Diffu-

sion Model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023. 3

3094



[25] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan

Ho. Variational diffusion models. Advances in neural infor-
mation processing systems, 34:21696–21707, 2021. 2

[26] Adam Kortylewski, Andreas Schneider, Thomas Gerig,

Bernhard Egger, Andreas Morel-Forster, and Thomas Vet-

ter. Training deep face recognition systems with synthetic

data. arXiv preprint arXiv:1802.05891, 2018. 1

[27] Vongani H Maluleke, Neerja Thakkar, Tim Brooks, Ethan

Weber, Trevor Darrell, Alexei A Efros, Angjoo Kanazawa,

and Devin Guillory. Studying Bias in GANs Through the

Lens of Race. In Proceedings of the European Conference
on Computer Vision, pages 344–360. Springer, 2022. 2

[28] Brianna Maze, Jocelyn Adams, James A Duncan, Nathan

Kalka, Tim Miller, Charles Otto, Anil K Jain, W Tyler

Niggel, Janet Anderson, Jordan Cheney, et al. IARPA Janus

Benchmark-C: Face Dataset and Protocol. In Proceedings of
the International Conference on Biometrics, pages 158–165.

IEEE, 2018. 7

[29] Qiang Meng, Shichao Zhao, Zhida Huang, and Feng Zhou.

MagFace: A Universal Representation for Face Recognition

and Quality Assessment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 14225–14234, 2021. 4, 7

[30] Aythami Morales, Julian Fierrez, Ruben Vera-Rodriguez,

and Ruben Tolosana. SensitiveNets: Learning agnostic

representations with application to face images. IEEE
Transactions on Pattern Analysis and Machine Intelligence,

43(6):2158–2164, 2020. 1

[31] Madhumita Murgia and Max Harlow. Who’s using your

face? The ugly truth about facial recognition. Financial
Times, 19, 2019. 1

[32] Joao C Neves, Ruben Tolosana, Ruben Vera-Rodriguez,

Vasco Lopes, Hugo Proença, and Julian Fierrez. GANprintR:

Improved Fakes and Evaluation of the State of the Art in Face

Manipulation Detection. IEEE Journal of Selected Topics in
Signal Processing, 14(5):1038–1048, 2020. 8

[33] Haibo Qiu, Baosheng Yu, Dihong Gong, Zhifeng Li, Wei

Liu, and Dacheng Tao. SynFace: Face Recognition With

Synthetic Data. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 10880–10890,

2021. 2, 3

[34] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,

and Mark Chen. Hierarchical text-conditional image gen-

eration with clip latents. arXiv preprint arXiv:2204.06125,

2022. 6

[35] Christian Rathgeb, Ruben Tolosana, Ruben Vera-Rodriguez,

and Christoph Busch. Handbook of digital face manipula-
tion and detection: from DeepFakes to morphing attacks.

Springer Nature, 2022. 1, 8

[36] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 6

[37] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,

Michael Rubinstein, and Kfir Aberman. DreamBooth: Fine

Tuning Text-to-Image Diffusion Models for Subject-Driven

Generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023. 2, 3, 6

[38] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,

Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,

et al. Photorealistic text-to-image diffusion models with deep

language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022. 6

[39] Divya Saxena and Jiannong Cao. Generative adversarial net-

works (GANs) challenges, solutions, and future directions.

ACM Computing Surveys, 54(3):1–42, 2021. 1

[40] Jiahui She, Yibo Hu, Hailin Shi, Jun Wang, Qiu Shen, and

Tao Mei. Dive into ambiguity: Latent distribution min-

ing and pairwise uncertainty estimation for facial expression

recognition. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6248–6257,

2021. 4

[41] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Inter-

preting the Latent Space of GANs for Semantic Face Editing.

In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 9243–9252, 2020. 2, 4

[42] Ruben Tolosana, Sergio Romero-Tapiador, Ruben Vera-

Rodriguez, Ester Gonzalez-Sosa, and Julian Fierrez. Deep-

Fakes detection across generations: Analysis of facial re-

gions, fusion, and performance evaluation. Engineering Ap-
plications of Artificial Intelligence, 110:104673, 2022. 8

[43] Paul Voigt and Axel Von dem Bussche. The EU General Data

Protection Regulation (GDPR). A Practical Guide, 1st Ed.,
Cham: Springer International Publishing, 10(3152676):10–

5555, 2017. 1

[44] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro

Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj,

and Thomas Wolf. Diffusers: State-of-the-art diffu-

sion models. https://github.com/huggingface/
diffusers, 2022. 2

[45] Yutong Xie, Zhaoying Pan, Jinge Ma, Jie Luo, and Qiaozhu

Mei. A prompt log analysis of text-to-image generation sys-

tems. arXiv preprint arXiv:2303.04587, 2023. 6

[46] Guoxing Yang, Nanyi Fei, Mingyu Ding, Guangzhen Liu,

Zhiwu Lu, and Tao Xiang. L2M-GAN: Learning to Manipu-

late Latent Space Semantics for Facial Attribute Editing. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2951–2960, 2021. 2

[47] Haoyu Zhang, Marcel Grimmer, Raghavendra Ramachan-

dra, Kiran Raja, and Christoph Busch. On the applicability

of synthetic data for face recognition. In Proceedings of the
IEEE International Workshop on Biometrics and Forensics,

pages 1–6. IEEE, 2021. 1, 2

3095


