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Abstract

Explainable AI (XAI) methods aim to describe the deci-
sion process of deep neural networks. Early XAI methods
produced visual explanations, whereas more recent tech-
niques generate multimodal explanations that include tex-
tual information and visual representations. Visual XAI
methods have been shown to be vulnerable to white-box and
gray-box adversarial attacks, with an attacker having full or
partial knowledge of and access to the target system. As the
vulnerabilities of multimodal XAI models have not been ex-
amined, in this paper we assess for the first time the robust-
ness to black-box attacks of the natural language explana-
tions generated by a self-rationalizing image-based activ-
ity recognition model. We generate unrestricted, spatially
variant perturbations that disrupt the association between
the predictions and the corresponding explanations to mis-
lead the model into generating unfaithful explanations. We
show that we can create adversarial images that manipulate
the explanations of an activity recognition model by having
access only to its final output.

1. Introduction

Deep neural models are generally black-box systems

whose decision-making process is obscure. Explainable ar-

tificial intelligence (XAI) aims to make decisions of deep

neural models transparent, i.e. understandable by a hu-

man [4]. An XAI model provides insights into the decision-

making process identifying feature importance contribution

that facilitates error analysis and the identification of un-

certain cases. XAI systems favor the assessment of the
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arising.

Figure 1: Sample adversarial images generated against

NLX-GPT [47] from a clean image (left) by changing the

activity prediction while maintaining the textual explana-

tion (middle) and by maintaining the activity prediction

while changing the textual explanation (right).

vulnerabilities of a model [2] and interactions with people

to support their decisions [26].

XAI approaches may generate visual (V-XAI), textual

(T-XAI) or multimodal (M-XAI) explanations. Visual ex-

planations highlight the most relevant pixel information

used by the model [46, 49, 55]. Examples include super-

pixels based visualizations (e.g. LIME [46]), heatmaps [49],

saliency maps [55], and feature contribution methods in-

spired by game theory (e.g. SHAP [35]). However, V-XAI

outputs may be difficult to comprehend for non-expert users

when no information is provided on how highlighted pixels

influence the decision. Textual explanations describe the

reasons for a decision in a more human-interpretable form

through natural language [14, 21, 25, 33, 36]. Finally, mul-

timodal explanations jointly generate textual rationales and

visual evidence in the form of attention maps [41, 47, 65].

A recent self-rationalizing M-XAI method [47] simultane-

ously predicts the decision and justifies, textually and visu-

ally, what led to that decision.

Various studies have addressed the vulnerability of V-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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XAI methods to adversarial attacks [3, 15, 18, 22, 27, 59,

56], however no previous work explicitly considered T-XAI

or M-XAI models.

In this paper we present a black-box1, content-based and

unrestricted2 attack against a natural language XAI model

for image classification [47]. We generate the adversar-

ial attack against a vision-language model with unrestricted

semantic colorization. Our attack uses only the final out-

put, namely the textual output or/and the visual maps of

the model to determine the adversarial perturbations. We

consider two attack scenarios, namely changing the activ-

ity prediction while keeping the textual explanation similar

and maintaining the same activity prediction while chang-

ing the textual explanation (see Figure 1). To the best of our

knowledge, no related work explicitly performs black-box

attacks on the prediction-generation mechanism of a natural

language-based explanation system.

In summary, our contributions are as follows:

• We propose the first black-box attack against the

prediction-explanation mechanism of a natural lan-

guage explanation model for image classification. We

evaluate the robustness of the target model against

adversarial image colorization techniques under two

scenarios: changing the prediction while keeping the

explanation similar, and keeping the same prediction

while changing the explanation.

• We create adversarial examples by combining image

semantics and the information provided by a visual ex-

planation map to localize the most relevant areas for

the prediction and to adapt to different image regions.

2. Related works

V-XAI models are susceptible to adversarial attacks that

may, for example, preserve the prediction of the original im-

age but change the explanation [3, 15, 18, 22, 27, 56, 59].

Examples of attacks include restricted adversarial pertur-

bations [18], structured manipulations that change the ex-

planation maps to match an arbitrary target map [15],

and adversarial classifiers [56] that fool post-hoc explana-

tions methods such as LIME [46] and SHAP [35]. Other

works use simple constant shift transformation of the in-

put data [27], model parameter randomization and data ran-

domization [3], and network fine-tuning with adversarial

loss [22] to manipulate visual explanations models.

1A black-box attack simulates a realistic threat since there is no need

of model-specific information and the access to the target model is limited

(i.e. only its final output).
2Unrestricted perturbations allow for more freedom in modifying the

image, which improve attack effectiveness and transferability [50, 51, 52,

58, 74], and can evade defense mechanisms more effectively [52, 60].

Table 1: Adversarial attacks against vision-language mod-

els. KEY – : white-box, : black-box, : gray-box, T: tar-

geted, T: untargeted, R: restricted, R: unrestricted, IC: im-

age captioning, SG: story ending text generation, IG: image

generation, VQA: visual question answering, ACT-X: ac-

tivity recognition explanation.

Reference Task Box R R T T

Chen et al. [10] IC � �
Zhang et al. [72] IC � �
Ji et al. [24] IC � �
Kwon et al. [30] IC � �
Xu et al. [68] IC � � �
Bhattad et al. [7] IC � �
Wu et al. [64] IC , � �
Wang et al. [62] IC , � � �
Sharma et al. [54] VQA � �
Huang et al. [23] SG � �
Xu et al. [67] IC, VQA � �
Lapid et al. [31] IC � � �
Aafaq et al. [1] IC � �
Chaturvedi et al. [9] IC, VQA � �
Zhao et al. [73] IC, VQA, IG � �
Ours ACT-X � �

Table 1 shows a summary of existing attacks on vision-

language models. Several studies covered V-XAI meth-

ods, however no work has yet explicitly considered tex-

tual explanations of self-rationalizing multimodal explana-

tions models. Existing similar research on vision-language

models focuses on attacking image captioning or visual

question answering models. The attacks use Lp-norm

restricted perturbations and are primarily conducted in a

white-box [10, 24, 30, 54, 62, 64, 67, 68, 72] or gray-

box [1, 9, 31, 62, 64] setup. These attacks are less practical

in a real-world scenario since they require prior knowledge

about the victim model, which is not readily available, and

are often designed for specific model architectures. Also,

restricted perturbations are often not semantically meaning-

ful [38, 57] and can create visible artifacts that can be de-

tected by defenses [16, 53, 66].

Attacks on image-to-text generation models may treat

the structured output as a single label and design the attack

as a targeted complete sentence [1, 31, 67]. This idea was

extended to targeted keywords attacks that encourage the

adversarial caption to include a predefined set of keywords

in any order [10, 72] or at specified positions in the cap-

tion [68]. Methods may mask out targeted keywords while

preserving the caption quality for the visual content [24].

Untargeted attacks may use attention maps of the underly-

ing target model to focus the adversarial noise on the re-

gions attended by the model [54]. Generative adversarial

models have also been used to create adversarial perturba-

tions [1, 62, 64]. Alternatively, adversarial images may be

generated by perturbing an image so that its features resem-
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ble those of a target image forcing the model to output the

same caption [1, 9, 31].

Multimodal vision-language models for classification

tasks are vulnerable to white-box and gray-box adversarial

perturbations on a single modality [69] (i.e. image input) or

multiple modalities [17, 39, 71] (i.e. image and text input).

A multimodal white-box iterative attack [23] that fuses im-

age and text modalities attacks has also been introduced to

change the output sentence of a multimodal story-ending

generation model. A recent black-box attack [73] deceives

large vision-language models assuming a targeted adversar-

ial goal. First, a surrogate model is used to craft adversarial

examples with restricted perturbations and transfers the ad-

versarial examples to the victim model; then a query-based

attacking strategy generates responses more similar to the

targeted text.

In this work, we focus on a self-rationalizing model

and empirically analyze the robustness against black-box

content-based unrestricted attacks by changing either the

activity prediction or the explanation. We do not consider

the scenario of attacking both activity and explanation since

this would be similar to image-captioning attacks that aim

to change the entire textual output of a model. The proposed

methodology uses only the final decision of the explanation

model and does not rely on any surrogate models. More-

over, considering the attack scenarios, our problem is more

challenging since multiple conditions need to be satisfied

for an attack to be successful.

3. Methodology

3.1. Problem definition

Let I ∈ R
h×w×3 be an RGB image with height h and

width w. Let ME be an encoder-decoder M-XAI model

such that ME(I) =
(
a, e, Ie

)
, where a = (a1, a2, . . . , ap)

represents the generated textual description of the activity

and e = (e1, e2, . . . , en) is the generated textual explana-

tion that justifies the activity decision; ai and ej are words,

and p and n are variable sentence lengths, which depend

on the type of activity illustrated in the image I . The set

of possible activities is not fixed if ME uses as decoder a

language prediction model that generalizes to activity cate-

gories unseen during training. Ie is the visual explanation

map generated for the predicted activity using the cross-

attention weights of ME .

We define an adversarial example for the explainable

model ME , the image Î , such that ME(Î) =
(
â, ê, Îe

)
,

where â, ê, and Îe are the activity prediction, textual expla-

nation, and visual explanation generated for the image Î . In

this work, we focus on the textual explanations and we do

not set any conditions on Îe. Under the assumption of faith-

ful explanations (i.e. explanations that accurately reflect the

process behind a prediction) the label-rationale should be

strongly associated [63]: changing the activity prediction

implies a change in its explanation. Therefore, our objec-

tive is to break the correlation between activity prediction

and its explanation by changing one part while keeping the

other unchanged.

We therefore consider two attack scenarios, namely S1
for which the activities predictions are different (a �= â),

but the explanations are similar (e � ê), and S2, for which

the activities predictions are the same (a = â), but the ex-

planations are different (e � ê).

3.2. Black-box unrestricted attacks

We condition the perturbation generation on the activ-

ity prediction and textual explanation. We craft region-

specific unrestricted perturbations and generate adversarial

examples following the image semantics-based idea pro-

posed in [52]. To determine the adversarial perturbations

we use the (dis)similarity between textual explanations. We

consider two strategies for perturbing the semantic areas ac-

cordingly and extend them to our problem. The first strategy

is a random colorization approach [52] and the second is a

strategy that combine photo editing techniques [5].

Explanation similarity. We measure the difference be-

tween e, the textual explanation generated for the clean im-

age I , and ê, the explanation generated for the perturbed

image Î . Let E(·) be a transformer-based network [45] that

computes the vector embedding of a sentence. Then we

calculate the similarity between e and ê, QT̂ (I, Î), as the

cosine similarity3 normalized in the range [0,1]:

QT̂ (I, Î) =
1

2

( ∑n
i=1 E(e)iE(ê)i√∑n

i=1 E(e)2i
√∑n

i=1 E(ê)2i
+ 1

)
,

(1)

where n is the size of the embedding vector. The larger the

similarity QT̂ (I, Î), the more similar the explanations for I

and Î . For example, let us consider the sentences e1: he is
standing on a bridge with a backpack on his back, e2: he is
wearing a backpack and standing on a bridge, and e3: he is
standing in a field with a frisbee in his hand. Sentences e1
and e2 have the same meaning and their similarity is 0.97.

Sentences e1 and e3 describe different scenarios (although

they share a few words) and their difference is reflected in

a lower similarity of 0.69. Sentences e2 and e3 also have a

low similarity of 0.70.

Image partitioning. We use a multi-step segmentation ap-

proach to partition an image into sensitive regions, Rs
i , and

non-sensitive regions, Rn
j . Sensitive regions correspond to

objects whose unrealistic colors and appearance could raise

suspicion (e.g. human skin), whereas non-sensitive regions

3We use a cosine-similarity measure with neural sentence embedding

because of its highest correlation with human judgement [12, 25, 45] and

out-performance of other methods such as METEOR [6] or BLEU [40].
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Figure 2: Example of semantic regions obtained after the

first step (middle) and last step (right) of the multi-step seg-

mentation scheme. Regions in brown are considered sensi-

tive to color changes.

can have their colors arbitrarily modified without necessar-

ily making the image look unnatural. We represent an image

I as:

I =
⋃

Rs
i ∪

⋃
Rn

j . (2)

First, we use semantic segmentation to partition an im-

age into semantic regions, such as person, sky, car, build-

ing [11]. Next, we detect skin4 areas on top of semantic

regions representing people and mark the skin as sensitive

and unalterable. Finally, we further partition each semantic

region into smaller areas and obtain the non-sensitive re-

gions with color-based oversegmentation [32]. An example

is shown in Figure 2.

Optimization process. We find an adversarial example for

I in S1, ÎS1, whose generated explanation has the highest

similarity with that generated for I , while also having a dif-

ferent activity prediction, as follows:

ÎS1 = argmax
Î

(
QT̂ (I, Î) {(a,â):a �=â}, QÎ(I, Î)

)
, (3)

where QÎ(I, Î) is used to reduce the noticeability of the

perturbation and is implemented as SSIM [61] between the

clean image, I , and the candidate adversarial example, Î ,

and {(a,â):a �=â} is the indicator function whose value is 1

only if the predicted activity of Î is different from the activ-

ity of I .

Similarly, we find an adversarial example for I in S2,

ÎS2, whose generated explanation has the lowest similarity

with the explanation generated for the clean image I , while

also having the same the activity prediction as I , as:

ÎS2 = argmax
Î

(
1−QT̂ (I, Î) {(a,â):a=â}, QÎ(I, Î)

)
, (4)

where {(a,â):a=â} is the indicator function whose value is

1 only if the predicted activity of Î is the same as the activity

of I .

Random colorization. We extend ColorFool [52] to con-

sider the explanation similarity QT̂ , as defined in Eq. 1. We

4Skin Segmentation Network:https://github.com/
WillBrennan/SemanticSegmentation

refer to this method as ColorFoolX (CFX). In this case, we

do not use the image similarity QÎ in the process of finding

the adversarial example. We rely only on the image region

semantics and prior information about color perception in

each region to generate the adversarial images. ColorFool

uses the semantic regions computed in the first step of the

multi-step segmentation scheme and defines four types of

sensitive regions: person, sky, vegetation, and water. Ad-

versarial images are generated by randomly modifying the

a and b components of the regions in the perceptually uni-

form Lab color space within specific color ranges, which

depends on the semantics of a region, without changing the

lightness L. ColorFool avoids perturbing regions represent-

ing people.

Combining editing filters. We extend a combination of im-

age editing filters method [5] to perform localized attention-

based attacks. The method manipulates image attributes

like saturation, contrast, brightness, sharpness, and applies

edge enhancement, gamma correction or soft light gradi-

ents. We restrict the perturbations to non-sensitive areas Rn
j

using the information from Ie: we select the non-sensitive

areas that are the most important for the activity prediction,

Rn
a , for S1, and the least important non-sensitive areas for

the activity prediction, Rn
na, for S2.

We generate Î , through a sequence of L filters on I , for

S1 as:

Î = Rs
i∪fαt1

,βt1
t1 ◦fat2

,βt2
t2 ◦· · ·◦fatL

,βtL
tL (Rn

a )∪Rn
na, (5)

and for S2 as:

Î = Rs
i∪Rn

a∪fαt1 ,βt1
t1 ◦fat2 ,βt2

t2 ◦· · ·◦fatL
,βtL

tL (Rn
na), (6)

where each fαi,βi

i is selected from a set of F predefined

filters parameterized with βi that controls the amount of

change of each property (intensity), and αi, the parameter

of the alpha blending between the clean image and the fil-

tered image. The optimal filter configuration is found with

a nested evolutionary algorithm consisting of an outer opti-

mization step that determines the sequence of L filters with

fti ∈ F with a genetic algorithm (GA) [37], and an inner

optimization step that determines the values of (αti , βti) of

each selected filter in the outer step with an Evolutionary

Strategies (ES) [44].

We consider both QT̂ and QÎ functions to find the ad-

versarial examples, as defined in Eq. 3, 4. Considering the

conflicting nature of the two functions we formulate the op-

timization process as multi-objective optimization, handled

by the NSGA-II algorithm [13], to find the best trade-off

between QT̂ and QÎ .
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4. Validation
4.1. Experimental setup

Multimodal explanation model. We perform the attacks

on the multimodal explanation model NLX-GPT for activ-

ity recognition [47], which textually explains its prediction

using CLIP [43] as vision encoder and the distilled GPT-

2 pre-trained model [48, 8] as a decoder. NLX-GPT gen-

erates also a visual explanation map based on the cross-

attention weights of the model. The distilled GPT-2 was

pre-trained on image-caption pairs (COCO captions [34],

Flickr30k [42], visual genome [29] and image-paragraph

captioning [28]). NLX-GPT was fine-tuned on the activity

recognition dataset ACT-X [41] (18k images). The encoder

is fixed for both the pre-training and fine-tuning stages.

Dataset. We use the test set of the ACT-X [41], a 3,620-

image dataset used to explain decisions of activity recog-

nition models. Each image is labeled with an activity and

three explanations. We perform the attack on the 1,829 im-

ages with correctly predicted activity by NLX-GPT.

Cases. We compare different filtering approaches and ob-

jective functions. We analyze the following cases: full

image filtering (FL-s) and localized filtering (LC-s, as de-

scribed in Section 3.2) with single objective (QT̂ ) for ex-

planation (dis)similarity; full image filtering (FL-m) and lo-

calized filtering (LC-m) with multi-objective function (QT̂ ,

QÎ ), and ColorFoolX (CFX). Note that CFX does not ac-

count for image similarity during the attack.

Parameters. For CFX we allow a maximum of 1000 tri-

als. For FL-s and LC-s we follow the CFX iterative ap-

proach. For FL-m and LC-m we use the multi-objective

evolutionary optimization with the configuration proposed

in [5]. We set the size of the outer population to Nout = 10,

the number of outer generations to Gout = 10, and the mu-

tation probability to ρ = 0.5. The inner population size is

λ = 5, inner generations Gin = 3 with initial learning rate

lr = 0.1 and decay rate β = 0.75.

4.2. Performance evaluation

Success of the attacks. We measure the success rate, Sr,

of the adversarial attacks as:

Sr =
1

Na

∑Na

j=1
�ω, (7)

where Na is the total number of images and, for S1:

ω � {(aj , âj) : aj �= âj ∧QT̂ (Ij , Îj) ≥ t}, (8)

where t is a threshold; and, for S2:

ω � {(aj , âj) : aj = âj ∧QT̂ (Ij , Îj) < t}. (9)

We determined the value of t with a subjective human

evaluation of the similarity of explanations pairs. We cre-

ated nine groups for the explanations based on their sim-

ilarity, such that Gi = {(e, ê) : QT̂ ∈ (1 − 0.05i, 1 −

G1 G2 G3 G4 G5 G6 G7 G8 G9

C1
C2
C3
C4
C5

Explanation groups

S
im

il
ar

it
y

cl
as

s

Figure 3: Mapping between explanation groups and similar-

ity classes. KEY – C1: not similar at all, C2: a little similar,

C3: somehow similar, C4: very similar, C5: they are the

same. Explanations pairs with QT̂ > 0.85 (i.e. G1-G3) are

rated as highly similar.

0.05(i − 1)]} with i ∈ {1, 2, . . . , 8} and G9 = {(e, ê) :
QT̂ ∈ (0, 0.6]}. From each group, we randomly selected

ten (e, ê) pairs that were rated on semantic similarity on a

5-level Likert scale: not similar at all; a little similar; some-
how similar; very similar; and they are the same. We used

majority voting to assign each pair of explanations to a sim-

ilarity class. Likewise, we labeled each group with the most

frequent similarity class of the questions within the group.

Eleven people who did not see the data prior to the test rated

the similarity and could change their rating before complet-

ing the test. The mapping between explanation groups and

similarity classes is shown in Figure 3. We choose somehow
similar class as similarity breaking point. This similarity

class maps to group G4, which corresponds to QT̂ < 0.85.

Thus, we set the threshold t = 0.85.

Image quality. We evaluate the quality of the adversar-

ial images with MANIQA [70], a transformer-based no

reference image quality assessment metric that won the

NTIRE2022 NR-IQA challenge [19]. MANIQA scores ∈
[0,1] and the higher the score, the better the quality.

Image colorfulness. We also analyze the colorfulness [20]

of the adversarial images and compare it with the colorful-

ness of original images in order to evaluate whether the col-

orization attacks generate images with color vividness in

accordance with human perception. Given an RGB image,

first the opponent color space representation is computed

as:

rg = R−G, yb =
1

2
(R+G)−B, (10)

where R,G,B are the red, green, and blue channels. Next,

the standard deviation σ and the mean pixel values μ are

calculated as:

σ =
√

σ2
rg + σ2

yb, μ =
√
μ2
rg + μ2

yb. (11)

Finally, the colorfulness metric is defined as:

C = σ + 0.3μ. (12)

The higher the C score, the more colorful the image.
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Figure 4: Adversarial images generated for a clean image

(top left). The visual explanation maps for the activity pre-

diction are shown next to each image. For S1 the images

have a different activity and the textual explanations are

similar. For S2 the images have the same activity but dif-

ferent textual explanations. The MANIQA scores for the

images are 0.69, 0.63, 0.70, 0.72, 0.64, from top to bottom,

respectively.

4.3. Results and Discussion

Success of the attacks. Table 2 reports the success rates

for all methods under both scenarios. Methods considering

only the explanation similarity (i.e. CFX, FL-s) achieve the

best success rate with Sr of 64.62% for CFX and 63.09%

for FL-s for S1, and Sr of 73.82 % for CFX and 77.53%

for FL-s in S2. CFX and FL-s apply the perturbation across

wider areas of the image than LC-s, which perturbs small

regions selected by combining over-segmentation and vi-

Table 2: Success rate (%) for the two scenarios. KEY –

CFX: ColorFoolX, LC-s: localized filtering with a single

objective, FL-s: full image filtering with a single objective,

LC-m: localized filtering with multi-objective, FL-m: full

image filtering with multi-objective.

Scenario CFX LC-s FL-s LC-m FL-m

S1 64.62 51.33 63.09 43.47 47.62

S2 73.82 67.47 77.53 51.76 49.45

sual map information. Moreover, the perturbation is only

limited by the semantic region information, which allows

more intense modifications than in the case of the multi-

objective setup where we use an image similarity metric,

QÎ , to calibrate the perturbation. The Sr decreases as we

focus on more localized areas (LC-s) and as we limit the

freedom of the attack with the image similarity function

(LC-m). This behavior could be caused by the noisiness

and inaccuracy of the cross-attention visual maps, which

may fail to accurately explain visually why the model made

a certain decision. Since we use the visual maps to localize

the areas to attack, inaccurate visual maps lead to selecting

areas that are irrelevant for the prediction. These model-

intrinsic visual attention maps require more investigation to

fully assess their relevance for the localized attacks. We fur-

ther notice a decrease in attack performance as we enforce

an additional constraint on the optimization. On top of the

area restriction we also control the applied perturbation us-

ing QÎ . Thus, the algorithm has to find a trade-off between

explanation (dis)similarity and image similarity. The found

solution may sometimes prioritize image similarity over ex-

planation similarity leading to a decrease of the attack suc-

cess rate. We also notice that the methods are more effective

in S2 achieving a Sr of up to 77.53% for FL-s. In this sce-

nario, the selected alterable areas are more numerous since

we focus on regions that are not highly attended by the ex-

planation model, and thus in general the adversarial pertur-

bation is applied on larger image areas than in the case of

LC methods. Moreover, we observe that in the case of local-

ized attacks, LC-s and LC-m, the visual attention maps rela-

tive to the activity prediction are less noisy and the attention

is primarily focused in one area of the image, whereas for

CFX more image regions are attended to, similarly to the

original image. Localized attacks, for their nature, are more

effective in altering the attention of the model.

Image quality. Both methods produce comparable results,

however, the generated adversarial images have different vi-

sual characteristics and aesthetics. In general, the image fil-

tering attacks produce images with more toned-down soft

vintage looks while most of the images generated by CFX

have vivid colors (see Figure 4). Table 3 reports the average

MANIQA and standard deviation scores for the adversarial
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Figure 5: Colorfulness scores distribution for S1 (top row) and for S2 (bottom row). The adversarial examples generated

with LC-m and FL-m have colors similar to the original images. In the case of CFX, the colors of adversarial examples

diverge from the distribution of original images. The higher the score, the more colorful the image.

Table 3: Average (and standard deviation) of MANIQA

scores for the adversarial images and their corresponding

clean images.

Attack

Scenario S1 S2

Clean Adversarial Clean Adversarial

CFX .70 ± .05 .68 ± .06 .70 ± .05 .67 ± .06

LC-s .69 ± .05 .66 ± .06 .70 ± .04 .65 ± .07

FL-s .70 ± .05 .65 ± .07 .70 ± .05 .65 ± .06

LC-m .69 ± .05 .67 ± .07 .70 ± .04 .68 ± .05

FL-m .70 ± .05 .66 ± .07 .70 ± .05 .68 ± .05

images and their corresponding clean versions. The aver-

age MANIQA score varies from 0.65 for FL-s and LC-s to

0.68 for CFX, LC-m, and FL-m. As a reference, the aver-

age score on the clean images is 0.70. This suggests that

the adversarial perturbations do not substantially degrade

the image quality.

Image colorfulness. Figure 5 shows the distribution of col-

orfulness scores of adversarial images and their correspond-

ing original version. LC-m and FL-m generate images with

colors most similar to the original images, whereas LC-s

and FL-s tend to generate images with more faded colors.

This indicates that the image similarity objective contributes

toward the generations of more natural-looking images, as

also shown by the SSIM scores in Figure 6. On the con-

trary, CFX generates very colorful images that diverge the

most from the original distribution (Figure 5). However,

images different from the original ones do not necessarily

imply worse quality. Thus, a human subjective evaluation

remains the best way to assess the perceptual realism, which

we will address in future work.

Ablation study. We perform an ablation study to verify the

contribution of each part of the multi-objective function of

FL-m and LC-m in both attack success rate and SSIM val-

ues (Table 4). We start with a random approach, where we

randomly perturb the images while only considering chang-

ing the activity prediction, disregarding explanation and im-

age similarity. Then we consider each objective separately.

For the image similarity objective, QÎ , the aim is to find

the image that changes the activity prediction and has the

highest SSIM. For the explanation objective, QT̂ , the goal

is to find an image that changes the activity prediction and

has the highest explanation similarity. When using both ob-

jectives, the goal is to find an adversarial image that has a

different activity prediction, high explanation similarity and

high image similarity. We consider both full image filtering,

FL, and localized image filtering, LC. In the case of the im-

age similarity objective only, adversarial images have the

highest SSIM scores but a low Sr. However, the textual ex-

planation objective achieves the highest Sr at the expense of

the image similarity. This is the main justification for using

the version with both objectives to find a trade-off between

Sr and SSIM.
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Table 4: Success rate (Sr) and structural similarity (SSIM)

for different objective functions for S1.

Text similarity Image similarity LC FL

Sr% SSIM Sr% SSIM

21.87 .86 22.86 .73

� 51.33 .73 63.09 .72

� 26.93 .95 28.16 .84

� � 43.47 .92 47.62 .84

Figure 6: SSIM distribution for S1. FL and LC benefit from

using the image similarity objective for the optimization.

CFX generates images with the highest SSIM values be-

cause it does not alter the lightness attribute of the images,

which can affect the structural similarity.

Figure 6 shows the generally large SSIM values of the

adversarial examples obtained with LC-s, FL-s, LC-m, FL-

m, and CFX for S1. The results show that using SSIM for

the optimization of the FL and LC is useful for generating

images with higher similarity since the type of modification

applied can alter the structural similarity. Among all, CFX

generates images with the highest SSIM values because it

does not directly target the lightness attribute in the images,

which can degrade the structural similarity.

We also conducted the analysis for CFX to assess its at-

tack capabilities with respect to the original version of Col-

orFool (CF) [52]. CFX searches for the adversarial example

that satisfies two conditions, while CF only considers the

activity prediction. The Sr is ∼ 80% when we attack only

the activity prediction. When considering also the explana-

tion similarity, as in S1, CF reaches Sr of 37.23 %, whereas

CFX reaches Sr of 64.62 % (Eq. 7). Similarly, when using

FL-s to attack only the activity, we observed that ∼ 66% of

images with different activity have also different explana-

tions (QT̂ < 0.85).

5. Conclusion
We presented a black-box attack on a self-rationalizing

multimodal explanation system and evaluated the robust-

ness of its prediction-explanation mechanism under two

scenarios: changing the activity prediction while keeping

the textual explanations similar and preserving the activ-

ity prediction while modifying the textual explanation. The

adversarial examples are generated through semantic col-

orization or through image filtering. We showed that the

prediction-explanation mechanism is vulnerable to black-

box attacks that use only the final output of the target model.

As future work, we will conduct a subjective evaluation of

the adversarial examples to inform the attention mechanism.

The proposed approach could be used to develop model-

agnostic evaluation metrics to enable comparative and fair

assessment of the faithfulness of different vision-language

explanation systems.
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