
IPCert: Provably Robust Intellectual Property Protection for Machine Learning

Zhengyuan Jiang, Minghong Fang, Neil Zhenqiang Gong
Duke University

{zhengyuan.jiang,minghong.fang,neil.gong}@duke.edu

Abstract

Watermarking and fingerprinting are two popular meth-

ods to protect intellectual property (IP) of a model. In partic-

ular, a model owner can use them to detect whether a given

model is a stolen version of its model. Robustness against

perturbation added to a model is a key desired property for

IP protection methods. In this work, we first show that exist-

ing IP protection methods are not robust against model per-

turbations in the worst-case scenarios as previously thought.

Second, we propose a randomized smoothing based frame-

work that can turn a watermarking/fingerprinting method

to be provably robust against model perturbations. How-

ever, a straightforward application of randomized smoothing

achieves suboptimal provable robustness. To address the

challenge, we propose optimization strategies to enhance

provable robustness. We evaluate our framework on multiple

datasets to show its provable robustness.

1. Introduction
A machine learning model represents intellectual prop-

erty (IP) of a model owner since training a model often

requires a large amount of human, data, and computation

resources. However, an attacker can steal a model provider’s

model (called target model) through different ways. For

instance, via exploiting computer vulnerabilities, an attacker

can compromise the computer that stores the target model

and remotely steals it [31]. When the target model is de-

ployed as a client-side application (e.g., a mobile app), an

attacker can have access to the application and reverse engi-

neer it to steal the target model [23]. When the target model

is deployed as a cloud service, an attacker can steal it via

repeatedly querying it [24, 26]. After stealing a target model,

an attacker can further post-process (e.g., fine-tune, distill)

it.

Therefore, various methods have been proposed to protect

IP of a model. Given a model (called suspect model), a model

owner can use these methods to detect whether it is a stolen

version of its target model. Existing IP protection methods

can be categorized into two groups: watermarking [3, 31,

25, 8] and fingerprinting [4, 29, 17, 20]. In these methods, a

model owner picks some data points (called IP data points)

and labels for them (called IP labels) based on its target

model. Given a suspect model, the model owner uses it

to predict the label of each IP data point and calculates a

matching rate (MR) as the fraction of the IP data points,

whose labels predicted by the suspect model match with

the corresponding IP labels. The model owner detects the

suspect model as a stolen version of its target model if MR

is larger than a threshold. In watermarking, the model owner

uses the IP data points and labels to augment the training

data when training its target model, while in fingerprinting,

the model owner extracts IP data points and labels near

the classification boundary of the target model after it was

trained using a standard training algorithm.

After an attacker steals a target model, the attacker can

post-process it to evade detection of an IP protection method.

In particular, when a post-processed version of the target

model has a MR that is smaller than the detection threshold,

the model owner would not detect it as a stolen version of its

target model. Therefore, robustness against post-processing

is a key desired property of an IP protection method, i.e.,

an IP protection method should still detect a post-processed

version as a stolen one.

Our work: In this work, we perform a systematic study

on the robustness of IP protection methods. First, we show

that existing IP protection methods are not robust against

post-processing in the worst-case scenarios as previously

thought. Second, we propose a framework to build IP protec-

tion methods that are provably robust against post-processing

even in the worst-case scenarios. Third, we propose opti-

mization strategies to further enhance the provable robust-

ness of our framework. Fourth, we evaluate our framework

systematically on multiple datasets.

Measuring robustness of existing IP protection meth-
ods. Existing studies [2, 4] claimed that watermarking and

fingerprinting are robust against post-processing. However,

their claims are based on popular post-processing techniques

such as fine-tuning and distillation. We find that such claim

is not valid, especially in the worst-case scenarios where the

IP protection method and its parameters are known to an

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

3612

attacker. Specifically, we propose a post-processing method

that adds a small carefully crafted perturbation to a target

model, such that 1) MR of the perturbed target model is

small, so existing IP protection methods cannot detect the

perturbed target model as a stolen version, and 2) the per-

turbed target model has similar accuracy with the target

model. Specifically, we formulate finding the perturbation

as an optimization problem and leverage projected gradient

descent to solve it. Our results on multiple datasets show

that, compared to fine-tuning and distillation, existing IP

protection methods are much less robust against our post-

processing.

A majority vote based framework. After showing that

existing IP protection methods are not robust against deliber-

ated post-processing, we then propose a framework called

IPCert to build IP protection methods that are provably ro-

bust against any post-processing even in the worst-case sce-

narios. Our IPCert is based on majority vote randomized

smoothing [7] and can turn an existing IP protection method

to be provably robust. Suppose a model owner has a target

model and protects it using an existing IP protection method,

which has a set of IP data points and labels. Given a suspect

model, the model owner constructs multiple noisy suspect

models via adding random Gaussian noises to it; for each IP

data point, the model owner uses each noisy suspect model

to predict its label and takes a majority vote among the pre-

dicted labels as the final predicted label; and MR is defined

as the fraction of IP data points whose majority-vote pre-

dicted labels match with the corresponding IP labels. IPCert

detects the suspect model as a stolen version if the MR is

large enough.

Theoretically, we show that MR of IPCert for a suspect

model is larger than a threshold, called certified matching

rate (CMR), when the �2 distance between the suspect model

and the target model is bounded by R (called perturbation

bound). In other words, when the target model is perturbed

by post-processing, MR for the perturbed target model (i.e.,

suspect model) is at least CMR no matter what perturbation

is added once its �2 norm is bounded by R.

Optimizing CMR. However, a straightforward applica-

tion of majority vote randomized smoothing achieves sub-

optimal CMR as we will show in experiments. To address

the challenge, we propose optimization strategies to further

enhance CMR of IPCert. Specifically, for watermarking, we

propose that the model owner adds Gaussian noise to the

model parameters when training the target model; and for

fingerprinting, we propose a method that considers robust-

ness when selecting IP data points. Our strategies make the

majority-vote label of an IP data point more likely to match

with its IP label, leading to a larger CMR.

Extensive evaluation. We evaluate IPCert on multiple

datasets. Moreover, we compare IPCert with median smooth-

ing (MS) based provably robust IP protection framework [3],

which is the only existing framework to build provably ro-

bust IP protection methods. First, our results show that,

for watermarking, IPCert achieves much better CMR than

MS, while for fingerprinting, IPCert achieves comparable

CMR with MS. Second, for popular post-processing such as

fine-tuning and distillation, IPCert achieves better MR than

MS. Third, our results show that our optimization strategies

substantially improve CMR of IPCert. Fourth, for suspect

models that are non-stolen versions of a target model, both

IPCert and MS achieve very small MR, which indicates that

they can correctly distinguish between stolen and non-stolen

models.

2. Related Work

Watermarking: Watermarking has been widely used to

protect the copyrights of multimedia [28]. Many works [31,

27, 18, 14, 9, 3, 25, 21, 22, 16, 5, 11, 30] extended water-

marking to protect IP of machine learning models in the past

several years. Existing watermarking methods can be white-

box [25] or black-box [3, 31, 2]. In white-box watermarking,

a model owner embeds a watermark into the parameters of its

target model when training it; and given a white-box access

to a suspect model, the model owner detects it as a stolen

version of the target model if the same watermark can be

extracted from its parameters. In black-box watermarking,

the model owner picks a set of IP data points and labels,

and uses them to augment the training dataset when training

the target model. Given a suspect model, the model owner

just queries it to obtain its predicted labels for the IP data

points and detects it as a stolen version if the MR between

the predicted labels and the IP labels is large enough.

Black-box watermarking is more general than white-box

watermarking since the former only needs a black-box ac-

cess to a suspect model. Therefore, in this work, we focus

on black-box watermarking and simply use the term water-

marking unless otherwise mentioned.

Fingerprinting: The key idea of fingerprinting [4, 29,

17, 20] is that each machine learning model has a unique

classification boundary. Therefore, fingerprinting extracts

some IP data points near the classification boundary of the

target model after it has been trained using the standard train-

ing algorithm. Moreover, the label predicted by the target

model for an IP data point is treated as its IP label. Note

that watermarking modifies the training process of the target

model, while fingerprinting does not. Given a suspect model,

fingerprinting detects it as a stolen version if it predicts the

same IP labels for a large fraction of the IP data points, i.e.,

the suspect model has very similar classification boundary

with the target model. Technically, fingerprinting finds an IP

3613

data point x via the following optimization problem [4]:

min
x

ReLU(Zi(x)− Zj(x) + k)

+ ReLU(maxt �=i,j Zt(x)− Zi(x)), (1)

where ReLU(·) is the ReLU activation function, i, j are

randomly sampled labels, Zi(x) is the ith logit of the target

model, and k is a hyperparameter. A model owner can find

multiple IP data points via solving the optimization problem

using different initialized x and label pairs i, j.

Certified robustness via randomized smoothing: Ran-

domized smoothing [7] is a popular technique originally

designed to build provably robust classifiers against adver-

sarial examples. Specifically, given a classifier and a testing

input, randomized smoothing adds random Gaussian noise

to the testing input and uses the classifier to predict the noisy

testing input. Randomized smoothing can be divided into

majority vote smoothing [7] and median smoothing [6] de-

pending on how to derive the predicted label of the original

testing input based on the predicted label of the noisy one.

For instance, majority vote smoothing constructs multiple

noisy testing inputs via adding random Gaussian noise to the

testing input and takes a majority vote among the predicted

labels of them as the final predicted label of the original

testing input.

MS framework[3] extended median smoothing to build

provably robust watermarking methods for IP protection.

Specifically, given a suspect model and a set of IP data points

and labels of a watermarking method for a target model, they

add random Gaussian noise to the suspect model to construct

multiple noisy suspect models; calculate MR of the IP data

points and labels for each noisy suspect model; and take the

median MR among the noisy suspect models as the final MR

for the original suspect model. They can show that their MR

for a suspect model is larger than a threshold (i.e., CMR)

when the �2 distance between the target model and the sus-

pect model is bounded. However, their method suffers from

two limitations: 1) median smoothing achieves suboptimal

CMR, and 2) they only studied watermarking IP protection

methods. The first limitation is because median smoothing is

intrinsically less robust than majority vote smoothing since

the labels of an IP data point predicted by the noisy suspect

models are considered independently. In particular, only one

suspect model’s MR (i.e., the median MR) is considered as

the final MR in median smoothing.

Ambiguity attacks to IP protection: Our work focuses

on robustness of IP protection. Security against ambiguity

attacks [8] is another desired property of IP protection, which

is orthogonal to robustness. In particular, in an ambiguity

attack, instead of post-processing a target model, an attacker

constructs IP data points and labels that have a large MR

for the target model. As a result, both the model owner and

attacker have valid IP data points to verify the ownership of

the target model, making it hard to verify the true ownership.

A formal framework [1] proposed a cryptographic signature

based watermarking method that is provably secure against

some ambiguity attacks, and DeepIPR [8] proposed a white-

box watermarking method for neural networks that is secure

against ambiguity attacks.

3. Measuring Robustness of Existing Methods
We show that existing IP protection methods, including

both watermarking and fingerprinting, are not robust against

deliberated post-processing that adds small carefully crafted

perturbations to the parameters of a target model.

3.1. Worst-case Post-processing

Formulating worst-case post-processing as an opti-
mization problem: Suppose θ represents the parameters

of a target model. An IP protection method has n IP data

points and labels, which we call IP dataset and denote as

DIP = {(x1, y1), (x2, y2), · · · , (xn, yn)}. We aim to mea-

sure the robustness of the IP protection method against post-

processing in the worst-case scenarios, where an attacker

knows the IP protection method and its IP dataset, e.g., an

insider of the IP protection system sells such information

to an attacker. In particular, our post-processing aims to

perturb the target model to achieve two goals: 1) MR for

the IP dataset is low, and 2) the perturbed model has similar

accuracy with the target model. Towards the first goal, our

post-processing method adds perturbation δ to the model

parameters θ such that the perturbed model θ + δ predicts

labels for the IP data points that do not match with the cor-

responding IP labels. Towards the second goal, we assume

a validation dataset Dv is available for post-processing and

the perturbed model θ + δ has a small loss (i.e., is accurate)

for Dv . Formally, we formulate finding perturbation δ as the

following optimization problem:

minL(δ) =− λ · 1

|DIP |
∑

(x,y)∈DIP

l(θ + δ, x, y)

+
1

|Dv|
∑

(x,y)∈Dv

l(θ + δ, x, y), (2)

s.t. ||δ||2 ≤ R, (3)

where l is a loss function (e.g., cross-entropy loss in our ex-

periments), the first term− 1
|DIP |

∑
(x,y)∈DIP

l(θ, x, y) quan-

tifies the first goal, the second term quantifies the second

goal, λ is a hyperparameter to balance them, and R is the

perturbation bound.

Solving the optimization problem via PGD: We can

obtain the perturbation δ via solving the above optimization

problem. For instance, we can use the popular projected gra-

dient descent (PGD) [19] to solve the optimization problem.

Specifically, the perturbation δ is initialized to be 0. In each

iteration, we compute the gradient of the objective function

3614

(a) CIFAR-10 (b) CIFAR-100 (c) MNIST

Figure 1. Results of our post-processing method on the three datasets.

L(δ) with respect to δ and move δ towards the inverse of

the gradient by a small step (called learning rate). If the �2
norm of the updated δ is larger than the perturbation bound

R, we project it so its �2 norm is R. We repeat the process

for max iter iterations. Algorithm 1 shows our algorithmic

details.

Algorithm 1 Our post-processing to existing IP protection

methods
Input: Parameters θ of a target model, IP dataset DIP , vali-

dation dataset Dv, learning rate lr, perturbation bound

R, and maximum number of iterations max iter.

Output: Perturbation δ
1: δ ← 0
2: for iter = 1 to max iter do
3: g ← ∇δL(δ)
4: δ ← δ − lr · g
5: if ‖δ‖2 > R then
6: δ ← δ · R

‖δ‖2

7: end if
8: end for

3.2. Experiments

Experimental setup: We use three benchmark datasets:

CIFAR-10 [13], CIFAR-100 [13], and MNIST [15]. The

target model architecture is ResNet-18 [10]. We divide each

training dataset into two halves. One half is used to train a

target model, while the other half is used to post-process the

target model. Moreover, we train another 50 models with

different initialization using the half of training data for each

dataset, and we treat them as non-stolen models since they

are trained from scratch instead of post-processing of the

target model. When training a model, we use a learning rate

of 0.05, momentum of 0.9, weight decay of 1e-4, and batch

size of 256. We train each model for 100 epochs.

We use a popular watermarking method [2] and a finger-

printing method [4] to protect a target model, though our

Table 1. Matching rates of the 50 non-stolen models.

Method Dataset Median Maximum

Watermark

CIFAR-10 0.10 0.15

CIFAR-100 0.01 0.04

MNIST 0.11 0.14

Fingerprint

CIFAR-10 0.03 0.14

CIFAR-100 0.00 0.03

MNIST 0.02 0.11

results are also applicable to other methods. For the water-

marking method, we pick 100 images and labels as IP dataset

DIP following [2]. The IP dataset is used to augment the

training data when training a target model. For fingerprint-

ing, we follow the settings in IPGuard [4]. Specifically, after

a target model is trained, we extract 100 IP data points from

it via solving the optimization problem in Eq. 1 using k = 5
as well as random initialization of x and label pairs i, j. For

each IP data point, we use the target model to predict its

label, which we treat as the corresponding IP label.

Experimental results: In our post-processing, we set

learning rate lr = 0.001, max iter=1,000, and Dv includes

1,000 examples sampled from the testing dataset uniformly

at random. Given a target model and a perturbation bound R,

we use our post-processing method to generate a perturbation

and construct a perturbed model. Then, we calculate 1) MR

of the perturbed model for the IP dataset, and 2) testing

accuracy of the perturbed model on the corresponding testing

dataset excluding the validation data.

Figure 1 shows MR and testing accuracy of the perturbed

model when the perturbation bound R increases, for both

watermarking and fingerprinting. Our results show that our

post-processing method can substantially decrease MR via

adding a small perturbation to the target model. For instance,

MR reduces to almost 0 when the perturbation bound is 2

for CIFAR-10 dataset. Table 1 shows the MRs of the 50

non-stolen models, where “Median” and “Maximum” are

the median and maximum MRs of the 50 non-stolen models.

Our results show that existing IP protection methods are not

robust against small perturbations added to the target model

3615

Table 2. Results of fine-tuned and distilled models.

Method Dataset
Fine-tuning Distillation

Accuracy MR Perturbation Accuracy MR Perturbation

Watermark

CIFAR-10 0.92 0.61 15.76 0.93 0.80 15.08

CIFAR-100 0.70 0.36 18.23 0.71 0.72 16.08

MNIST 0.99 0.39 17.91 0.99 0.50 16.25

Fingerprint

CIFAR-10 0.92 0.65 16.67 0.92 0.65 15.20

CIFAR-100 0.71 0.03 18.41 0.72 0.36 16.03

MNIST 0.99 0.29 17.24 0.99 0.42 16.05

in the worst-case scenarios. In particular, when a target

model is perturbed by our post-processing method, an IP

protection method cannot distinguish between the perturbed

model and a non-stolen model using MR, while the testing

accuracy of the perturbed model is maintained.

Table 2 shows the testing accuracy, MR, and �2-norm per-

turbation of a perturbed model post-processed from a target

model using fine-tuning and distillation. The �2-norm per-

turbation is the �2 distance between a perturbed model and a

target model. In our experiments, for each dataset, we use

half of the training data to fine-tune or distill a target model

for 50 epochs (Section A.1 in Appendix shows more details

on parameter settings). Our results show that, compared to

our post-processing, these post-processing techniques intro-

duce larger perturbations to a target model but the MR is

still large. Take CIFAR-10 as an example, fine-tuning the

target model introduces around 15.76 �2-norm perturbation

but watermarking still achieves 0.61 MR. In other words,

existing popular post-processing methods give us false sense

of robustness in the worst-case scenarios.

4. Our IPCert

4.1. A Majority Vote Framework

Given a model and an IP dataset, IPCert computes a MR

via adding Gaussian noise to the model. IPCert leverages

majority vote smoothing [7], which was originally designed

to build robust classifiers against adversarial examples. In

particular, majority vote smoothing adds Gaussian noise to a

testing input when building a robust classifier, while we add

Gaussian noise to a model.

Predicting label for an IP data point: Given an IP

dataset DIP = {(x1, y1), (x2, y2), · · · , (xn, yn)} and a

model θ (e.g., target model, suspect model), where the IP

dataset may be obtained via a watermarking or fingerprint-

ing method. Our IPCert adds random Gaussian noise to

the model before using it to predict the label of an IP data

point. For simplicity, we denote by F (θ, x) the label for

a data point x predicted by a model whose parameters are

θ. Since we add random Gaussian noise ε to the model

θ, the predicted label F (θ + ε, x) for an IP data point x
is also random. We denote by pc the probability that the

predicted label F (θ + ε, x) is c. Our IPCert predicts the

label with the largest probability pc for IP data point x. For-

mally, we denote by G(θ, x) the label for x predicted by

our IPCert when the model is θ, and G(θ, x) is defined as

follows: G(θ, x) = argmax
c∈Y

Pr(F (θ + ε, x) = c), where Y
is the set of labels, ε ∼ N (

0, σ2I
)

is an isotropic Gaussian

noise, and σ is the standard deviation of the Gaussian noise.

G(θ, x) can be viewed as the majority-vote label among the

labels predicted by multiple noisy suspect models for x, as

we will further elaborate in Section 4.3.

Matching rate (MR): MR of IPCert for a model θ is

the fraction of IP data points whose predicted labels G(θ, x)
match with the corresponding IP labels. Formally, we have:

MR =
1

n

∑n

i=1
I(G(θ, xi) = yi), (4)

where I is an indicator function whose value is 1 if

G(θ, xi) = yi and 0 otherwise.

4.2. Deriving Certified Matching Rate

Given a model and an IP dataset, we derive a lower bound

of MR, called certified matching rate (CMR), for IPCert

when an arbitrary, bounded perturbation is added to the

model. Next, we first review a key theoretical result from

majority vote smoothing and then derive a CMR for IPCert.

Certified radius for an IP data point: Given a model

θ and an IP data point x, we denote by A and B the pre-

dicted labels with the largest and second largest probabilities

when adding random Gaussian noise to θ in our IPCert.

Therefore, our IPCert predicts label A for x. Moreover, we

denote by pA a lower bound of the probability of label A
and by pB an upper bound of the probability of the label B
in our IPCert. We will show how to estimate the probability

lower/upper bounds pA and pB in Section 4.3. Suppose an

attacker adds perturbation δ to the model θ. Based on major-

ity vote smoothing [7], our IPCert still predicts label A for x
when the perturbation δ is bounded. Formally, we have the

following lemma based on [7]:

Lemma 4.1. F is a function that takes a model θ and

an IP data point x as input and outputs predicted label

c. ε ∼ N (
0, σ2I

)
is Gaussian noise. Suppose A ∈ Y

and pA, pB ∈ [0, 1] satisfy: Pr (F (θ + ε, x) = A) ≥ pA ≥
pB ≥ maxc�=A Pr(F (θ + ε, x) = c). Then, we have

3616

G(θ + δ, x) = A for all ‖δ‖2 < r, where

r =
σ

2

(
Φ−1

(
pA

)− Φ−1 (pB)
)
, (5)

where Φ−1 is the inverse cumulative distribution function of

the standard Gaussian distribution.

We call r certified radius for an IP data point x. Based

on Lemma 4.1, we can obtain a certified radius ri for each

IP data point xi, where i = 1, 2, · · · , n. In other words, the

label predicted by IPCert for xi does not change when the

perturbation added to the model is bounded by ri.
Certified matching rate (CMR): Given a model θ, an IP

dataset DIP , and a perturbation bound R, we derive a lower

bound of MR, i.e., CMR. Specifically, CMR is the least frac-

tion of the IP data points, for which the labels predicted by

IPCert match with the IP labels no matter what perturbation

is added to the model once its �2-norm is bounded by R.

Formally, we have CMR as follows:

CMR =
1

n

∑n

i=1
I(G(θ, xi) = yi) · I(ri > R), (6)

where I is an indicator function, G(θ, xi) is the label for

xi predicted by IPCert, and ri is the certified radius for xi.

A model owner can calculate a CMR for its target model

(i.e., the model θ is the target model). When an attacker

steals the target model and post-processes it, the matching

rate for the post-processed model is at least CMR no matter

what post-processing (e.g., the worst-case post-processing in

Section 3) is used once the �2-norm perturbation introduced

by the post-processing is bounded by R.

4.3. Computing (Certified) Matching Rate

Given a model θ and an IP dataset DIP , we compute MR

of the model in our IPCert. Moreover, given a bound R of

the perturbation that can be added to the model, we further

compute the CMR of the model. The key to compute MR

is to estimate the predicted label G(θ, x) for each IP data

point x. A key challenge to compute CMR is to calculate the

certified radius of each IP data point according to Lemma 4.1,

and the key challenge to calculate the certified radius is how

to estimate pA and pB for each IP data point. Next, we

describe a Monte Carlo method to address the challenge.

Given a model θ and an IP data point x, we construct m
(m = 10, 000 in our experiments) noisy models via adding

random Gaussian noises ε1, ε2, · · · , εm to the model. We use

each noisy model to predict the label of x, and we define the

count mc for label c as mc =
∑m

j=1 I (F (θ + εj , x) = c),
where mc is the number of noisy models that predict label

c for x. G(θ, x) is the label (denoted as A) with the largest

count. Given the predicted label G(θ, x) for each IP data

point, we can calculate the MR of the model according to

Eq. 4.

The count mc follows a binomial distribution with param-

eters m and pc, i.e., mc ∼ Binomial(m, pc). Therefore, we

can use one-sided simultaneous confidence interval estima-

tion to estimate pA and pB . Specifically, according to Certi-

fied Topk [12], we have pA = B
(

α
|Y| ;mA,m−mA + 1

)

and pc = B
(
1− α

|Y| ;mc + 1,m−mc

)
, ∀c
= A, where

|Y| is the total number of classes, B(β; a, b) is the βth quan-

tile of the Beta distribution with parameters a and b, and the

simultaneous confidence level for the above estimations is

1− α. Then, we have pB = maxc�=A{pc}. After estimating

pA and pB of an IP data point, we can calculate its certi-

fied radius according to Eq. 5. Given the certified radius of

each IP data point, we can calculate the CMR of the model

according to Eq. 6.

4.4. Optimizing Certified Matching Rate

Watermarking: In our IPCert, we add random Gaussian

noise to a model before using it to classify an IP data point.

When a noisy model is more likely to correctly classify an

IP data point, the CMR may be larger. However, in standard

training, a model, instead of a noisy one, is trained to learn

the correlations between an IP data point and its label. As a

result, the noisy model is likely to misclassify IP data points,

leading to suboptimal CMR. To address the limitation, we

propose to add Gaussian noise to the model during training.

In particular, in each epoch, we first update the model fol-

lowing the standard training process. Then, we add multiple

Gaussian noise to the model and calculate the average loss of

the noisy models for the IP dataset, whose gradient is used

to update the model. Algorithm 2 in Appendix shows the

details of training with noise.

Fingerprinting: Fingerprinting extracts IP data points

from a model that has already been trained. Therefore, in-

stead of adding noise to the model during training, we pro-

pose a new method to extract IP data points after a model has

been trained to maximize CMR. According to Eq. 6, CMR

relies on two terms I(G(θ, xi) = yi) and I(ri > R). There-

fore, we introduce classification loss and robustness loss to

quantify them, respectively. The losses are smaller when the

two terms are better satisfied across the IP dataset. Therefore,

we select an IP dataset that has smaller classification and

robustness losses.

Suppose we are given a model θ and we aim to extract

an IP data point x with label j. We sample s (we use

16 in our experiments) Gaussian noise from N (
0, σ2I

)
,

which we denote as ε1, ε2, · · · , εs. We use these noise to

estimate G(θ, x), pA, and pB , based on which we define

our classification and robustness losses. Define ĝc(θ, x) =
1
s

∑s
t=1 gc(θ + εt, x) for each label c, where gc is the

output probability of a model for label c. Then, we de-

fine classification loss LC and robustness loss LR as fol-

lows: LC = ReLU(maxc�=j ĝc(θ, x)− ĝj(θ, x)) and LR =

3617

(a) CIFAR-10 (b) CIFAR-100 (c) MNIST

Figure 2. CMR of MS and IPCert for watermark on the three datasets.

σ
2 ReLU(γ − ξ(θ, x)), where ξ(θ, x) = Φ−1

(
ĝj (θ, x)

) −
Φ−1 (maxt�=j ĝt (θ, x)) and γ is a hyperparameter (we set

it to 8 in our experiments). In calculating ξ(θ, x), we use

ĝj (θ, x) and maxt�=j ĝt (θ, x) to approximate pA and pB ,

respectively. Finally, we define a loss function:

L(x) = LIP + η(LC + LR), (7)

where LIP is the loss in Eq. 1 defined by IPGuard [4] and η
is a hyperparameter. We find an IP data point x with label

j via minimizing L(x) using gradient descent. Specifically,

we randomly initialize x and pick label i in LIP (label j is

already given) and iteratively update x until convergence.

Algorithm 3 in Appendix shows the details.

5. Experiments
5.1. Experimental Setup

Datasets, models, and IP datasets: We use the same

settings in Section 3.2. In particular, we use three datasets

(CIFAR-10, CIFAR-100, and MNIST). For each dataset, we

train a target model and 50 non-stolen models using the

parameter settings in Section 3.2. One difference is that

for watermarking, we add Gaussian noise when training a

target model as described in Section 4.4. For watermarking,

we obtain an IP dataset for each target model following

Section 3.2. For fingerprinting, we obtain an IP dataset

following our optimization strategy described in Section 4.4.

Evaluation metrics: We use CMR and MR as evalu-

ation metrics. Given a target model, an IP dataset, and a

perturbation bound R, we can calculate CMR of the target

model. Such CMR is the least MR for a suspect model that

is post-processed from the target model no matter what post-

processing an attacker uses, once the �2-norm perturbation

introduced by the post-processing is bounded by R. CMR

does not depend on specific post-processing an attacker may

use. MR is used to measure performance of an IP protection

method when a specific post-processing method may be used

by an attacker. In particular, given a post-processing method,

we use it to post-process a target model and then calculate

the MR for the post-processed model. Once the MR of a

post-processed model is larger than those of the non-stolen

models, the post-processed model and the non-stolen models

can still be distinguished.

Compared method: We compare our IPCert with median

smoothing (MS)-based IP protection framework [3]. Both

IPCert and MS can turn a watermarking or fingerprinting

method to be provably robust. Given a model and an IP

dataset, MS uses the following way to compute MR: 1) the

model owner constructs multiple noisy models via adding

random Gaussian noise to the original model; 2) the model

owner calculates MR for each noisy model by using it to

predict labels for the IP data points; and 3) the model owner

takes the median among all MRs as the final MR for the

original model.

Parameter setting: Our IPCert has parameters: confi-

dence level 1− α, the number of noisy models m, and noise

level σ. Unless otherwise mentioned, we set them as follows:

α = 0.001 and m = 10, 000. Since fingerprinting does not

interfere with the training process of the target model, while

watermarking injects noise during training, fingerprinting

can tolerate smaller perturbation. Therefore, we set σ = 1
for watermarking and σ = 0.01 for fingerprinting.

5.2. Experimental Results

IPCert achieves higher or comparable CMRs
than/with MS: Figures 2 and 5 (in Appendix) respectively

show the CMR of MS and IPCert for watermarking and fin-

gerprinting on the three datasets. Our results show that, com-

pared to MS, IPCert achieves higher or comparable CMR.

The reason is that majority vote smoothing is intrinsically

more robust than median smoothing since the labels of an

IP data point predicted by the noisy models are considered

independently in median smoothing. In other words, our

IPCert can tolerate a larger or comparable perturbations

added to a target model. For instance, on CIFAR-10 dataset,

as shown in Figure 2(a), the labels of the IP data points pre-

dicted by our IPCert always match with the corresponding

IP labels as long as the perturbation is bounded by 1.25.

3618

(a) Watermark with fine-tuning (b) Watermark with distillation (c) Fingerprint with fine-tuning (d) Fingerprint with distillation

Figure 3. MR of MS and IPCert against fine-tuning and distillation on CIFAR-10. Figure 8 and 9 in Appendix show the results for the other

two datasets.

Table 3. MRs of the 50 non-stolen models.
Method Framework Median Maximum

Watermark
MS 0.12 0.16

IPCert 0.12 0.15

Fingerprint
MS 0.08 0.14

IPCert 0.06 0.15

However, for MS, a large fraction of IP data points may be

misclassified if the perturbation added to a target model is

larger than 0.75.

IPCert achieves higher MRs than MS against popu-
lar post-processing: Figure 3 shows the MRs of MS and

IPCert for a post-processed model on CIFAR-10 dataset

when an attacker uses fine-tuning and distillation to post-

process a target model for 50 epochs. The post-processing

settings are the same as those in Section 3.2. We also com-

pare IPCert with MS on different datasets (CIFAR-100 and

MNIST). The results in Figure 8 and 9 (in Appendix) show

that for each dataset, IPCert performs better than MS for

both watermark and fingerprint against fine-tuning and dis-

tillation. Our results show that IPCert achieves higher MRs

than MS when an attacker post-processes a target model

using fine-tuning or distillation. Note that our results for MS

are different from those in median smoothing framework [3]

due to different training settings.

IPCert and MS achieve similar MRs for non-stolen
models: Table 3 summaries the MRs of the 50 non-stolen

models for watermark and fingerprint on CIFAR-10 dataset,

where “Median” and “Maximum” denote the median and

maximum MRs of the 50 non-stolen models. We observe

that IPCert and MS achieve comparable MRs for the non-

stolen models, which means that IPCert improves provable

robustness against perturbations added to a target model

without increasing MRs for non-stolen models.

Optimization strategies to improve CMR: For water-

mark, we add isotropic Gaussian noise to a target model dur-

ing training. For fingerprint, we propose a new method that

considers robustness when selecting IP data points, where

the hyperparameter η controls the selection. In our prior

experiments, we set η = 0. Figure 4(a) shows the CMRs

of IPCert for watermark on CIFAR-10 dataset, when the

target model is trained without noise (i.e., the standard train-

(a) (b)

Figure 4. (a) Training with vs. w/o noise for watermark. (b) Varying

η for selecting IP data points in fingerprint.

ing algorithm) or with noise; while Figure 4(b) shows the

CMRs of IPCert for fingerprint when η varies. Since the

starting points of CMR curves are all 1 when σ = 0.01, we

set σ = 0.015 in these experiments to show more details.

Moreover, we show the results for small perturbation bounds

to better contrast the differences. Our results show that our

optimization strategies, i.e., training with noise for water-

mark and considering robustness to select IP data points for

fingerprint, substantially increase CMRs.

Impact of parameters: Figure 6 and 7 (in Appendix)

show the impacts of confidence level 1− α, the number of

noisy models m, and noise level σ on IPCert for CIFAR-10

dataset. We observe that 1) CMR increases slightly as α
increases, 2) CMR also increases as m increases because we

can estimate pA and pB more accurately using more noisy

models, which in turn gives a larger certified radius for each

IP data point and thus larger CMR, and 3) for watermark,

when σ = 0.5, IPCert obtains the largest CMR, and we can

optimize CMR via choosing appropriate value for σ.

6. Conclusion
We first find that existing IP protection methods are not

robust against deliberated post-processing of a target model

as previously thought in the worst-case scenarios. We then

propose a novel majority vote smoothing framework called

IPCert that can turn an existing IP protection method to be

provably robust against post-processing. Moreover, train-

ing with noise for watermark and considering robustness

to select IP data points for fingerprint can further enhance

provable robustness of IPCert.

3619

Acknowledgement
This work was supported by NSF grant No. 1937786,

No. 1937787, No. 2125977, as well as ARO grant No.

W911NF2110182.

References
[1] André Adelsbach, Stefan Katzenbeisser, and Helmut Veith.

Watermarking schemes provably secure against copy and

ambiguity attacks. In Proceedings of the 3rd ACM workshop

on Digital rights management, pages 111–119, 2003.

[2] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas,

and Joseph Keshet. Turning your weakness into a strength:

Watermarking deep neural networks by backdooring. In 27th

USENIX Security Symposium (USENIX Security 18), pages

1615–1631, 2018.

[3] Arpit Bansal, Ping-yeh Chiang, Michael J Curry, Rajiv Jain,

Curtis Wigington, Varun Manjunatha, John P Dickerson, and

Tom Goldstein. Certified neural network watermarks with ran-

domized smoothing. In International Conference on Machine

Learning, pages 1450–1465. PMLR, 2022.

[4] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Ipguard:

Protecting intellectual property of deep neural networks via

fingerprinting the classification boundary. In Proceedings of

the 2021 ACM Asia Conference on Computer and Communi-

cations Security, pages 14–25, 2021.

[5] Laurent Charette, Lingyang Chu, Yizhou Chen, Jian Pei, Lan-

jun Wang, and Yong Zhang. Cosine model watermarking

against ensemble distillation. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 36, pages 9512–

9520, 2022.

[6] Ping-yeh Chiang, Michael Curry, Ahmed Abdelkader,

Aounon Kumar, John Dickerson, and Tom Goldstein. De-

tection as regression: Certified object detection with median

smoothing. Advances in Neural Information Processing Sys-

tems, 33:1275–1286, 2020.

[7] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified

adversarial robustness via randomized smoothing. In Interna-

tional Conference on Machine Learning, pages 1310–1320.

PMLR, 2019.

[8] Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethink-

ing deep neural network ownership verification: Embedding

passports to defeat ambiguity attacks. Advances in neural

information processing systems, 32, 2019.

[9] Jia Guo and Miodrag Potkonjak. Watermarking deep neural

networks for embedded systems. In 2018 IEEE/ACM Inter-

national Conference on Computer-Aided Design (ICCAD),

pages 1–8. IEEE, 2018.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[11] Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and

Chenguang Wang. Protecting intellectual property of lan-

guage generation apis with lexical watermark. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 36,

pages 10758–10766, 2022.

[12] Jinyuan Jia, Xiaoyu Cao, Binghui Wang, and Neil Zhenqiang

Gong. Certified robustness for top-k predictions against ad-

versarial perturbations via randomized smoothing. In Interna-

tional Conference on Learning Representations, 2019.

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.

[14] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adver-

sarial frontier stitching for remote neural network watermark-

ing. Neural Computing and Applications, 32(13):9233–9244,

2020.

[15] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist

handwritten digit database. Available: http://yann. lecun.

com/exdb/mnist, 1998.

[16] Hanwen Liu, Zhenyu Weng, and Yuesheng Zhu. Watermark-

ing deep neural networks with greedy residuals. In ICML,

pages 6978–6988, 2021.

[17] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep

neural network fingerprinting by conferrable adversarial ex-

amples. arXiv preprint arXiv:1912.00888, 2019.

[18] Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and

Peyman Milanfar. Distortion agnostic deep watermarking.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 13548–13557, 2020.

[19] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learn-

ing models resistant to adversarial attacks. In International

Conference on Learning Representations, 2017.

[20] Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Hao-

jin Zhu, and Minhui Xue. Fingerprinting deep neural net-

works globally via universal adversarial perturbations. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 13430–13439, 2022.

[21] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushan-

far. Deepsigns: A generic watermarking framework for

ip protection of deep learning models. arXiv preprint

arXiv:1804.00750, 2018.

[22] Chen Sun and En-Hui Yang. A watermarking-based frame-

work for protecting deep image classifiers against adversarial

attacks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 3329–3338,

2021.

[23] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove.

Mind your weight (s): A large-scale study on insufficient

machine learning model protection in mobile apps. In 30th

USENIX Security Symposium (USENIX Security 21), pages

1955–1972, 2021.

[24] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and

Thomas Ristenpart. Stealing machine learning models via

prediction {APIs}. In 25th USENIX security symposium

(USENIX Security 16), pages 601–618, 2016.

[25] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and

Shin’ichi Satoh. Embedding watermarks into deep neural

networks. In Proceedings of the 2017 ACM on international

conference on multimedia retrieval, pages 269–277, 2017.

[26] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperpa-

rameters in machine learning. In 2018 IEEE symposium on

security and privacy (SP), pages 36–52, 2018.

3620

[27] Peng Yang, Yingjie Lao, and Ping Li. Robust watermark-

ing for deep neural networks via bi-level optimization. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 14841–14850, 2021.

[28] Innfarn Yoo, Huiwen Chang, Xiyang Luo, Ondrej Stava, Ce

Liu, Peyman Milanfar, and Feng Yang. Deep 3d-to-2d water-

marking: Embedding messages in 3d meshes and extracting

them from 2d renderings. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 10031–10040, 2022.

[29] Ning Yu, Vladislav Skripniuk, Dingfan Chen, Larry Davis,

and Mario Fritz. Responsible disclosure of generative

models using scalable fingerprinting. arXiv preprint

arXiv:2012.08726, 2020.

[30] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming

Zhang, Wenbo Zhou, Hao Cui, and Nenghai Yu. Model

watermarking for image processing networks. In Proceedings

of the AAAI conference on artificial intelligence, volume 34,

pages 12805–12812, 2020.

[31] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph

Stoecklin, Heqing Huang, and Ian Molloy. Protecting intel-

lectual property of deep neural networks with watermarking.

In Proceedings of the 2018 on Asia Conference on Computer

and Communications Security, pages 159–172, 2018.

3621

