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Abstract

We introduce specular highlight as a natural adversary
and examine how deep neural network classifiers can get
affected by them, resulting in a reduction in their predic-
tion performance. We also curate two separate datasets,
ImageNet-AH with artificially generated Gaussian specu-
lar highlights and ImageNet-PT by flashing natural spec-
ular highlights on printed images, both demonstrating sig-
nificant degradations in the performance of the classifiers.
We note around 20% drop in the model prediction accuracy
with artificial specular highlights and around 35% accu-
racy drop in torch-highlighted printed images. These drops
indeed question the robustness and reliability of modern-
day image classifiers. We also find that finetuning these
classifiers with specular images does not improve the pre-
diction performance enough. To understand the reason, we
finally do an activation mapping analysis and examine the
network attention areas in images with and without high-
lights. We find that specular highlights shift the attention
of models which makes fine-tuning ineffective, eventually
broadly leading to performance drops.

1. Introduction
In recent years, deep learning has allowed us to make

significant improvements in image recognition and classifi-

cation tasks. However, deep neural networks can fail unpre-

dictably. Adversarial attacks make it worse. An adversar-

ially affected image hardly appears any different from the

one getting predicted correctly, but it still gets misclassified.

Recent studies have shown that adding carefully constructed

noise to an image can make it an adversarial image that can

fool the network with high confidence [31, 15]. Another

interesting work demonstrated that the printed versions of

some images could also act as adversarial examples when

they ran it through an Inception v3 classifier [24]. A neural

network can also be fooled by simply adding an adversarial

patch [5] to the image regardless of its scale or location. In

[11], Robust Physical Perturbations (RP2) were introduced

to prove how images can get affected under physical-world

adversary. These studies clearly demonstrated that deep

neural networks are far from perfect, and it does not take

much effort to deceive a network.

Since ImageNet [9] dataset is considered a benchmark

for the image classification [23] and object detection tasks

[21], many researchers have been continually working on

developing improved models every year to improve the clas-

sification performance [17] on this huge dataset, which is

supposed to cover all kinds of images. However, more re-

cent studies have shown that even such models are not de-

void of getting affected by the adversarial attacks. Models

trained on ImageNet can be fooled by adding a small noise

vector imperceptible to the human eye using fast gradient

sign method [15], by exploiting image semantics to selec-

tively modify colors [28], and by simply adding a pertur-

bation vector without the need of special optimization or

gradient computation [25]. Different from these intentional

mathematical perturbations, there are also some natural ad-

versaries that can happen. For example, shadows [34] and

specular highlights are quite common ones. In this paper,

we introduce and analyse specular highlights, which are

relatively understudied as a natural adversary and examine

how modern-day classifiers can get fooled in their presence.

A specular highlight is a bright spot of light that is ob-

served when a surface reflects off light from a source in a

mirror-like fashion. Specular reflection occurs when the an-

gle of reflection of light on a surface is equal to the angle of

incidence, i.e., the surface normal is bisecting the angle be-

tween the incoming light and the viewer’s direction. Thus,

the highlighted spot on the object’s surface can be directly

perceived as somewhat of an image of the light source it is

reflecting. Computation of tasks such as image segmenta-

tion [1], clustering, recoloring, and object detection [3] can

get fooled by the interference of specular highlights. Most

modern-day algorithms consider specular highlight regions
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Figure 1. An example of how specular highlights, whether simulated mathematically as Gaussian speckle or thrown naturally by a torch,

can affect the classification performance of a deep neural network causing it to make wrong predictions.

Figure 2. Augmented specular highlight generation to build

ImageNet-AH. The figure shows sample images affected by math-

ematically generated Gaussian specular highlight at varying loca-

tions with varying standard deviations (SD).

on an object or image as outliers and only consider perfect

diffuse surfaces to make their decisions [2]. This assump-

tion of simplification affects the robustness and applicabil-

ity of algorithms negatively. Some vision algorithms rely

heavily on saliency [33], [12]. Specular highlights can be

very salient at times resulting in shift of saliency from the

main object to themselves, or on other regions, and hence

leading to incorrect results. In real-world scenarios, too,

the specular highlights can limit the computation power of

the vision algorithms. For instance, glare on the road signs

at night can confuse a computer vision sign detection al-

gorithm in autonomous vehicles. Perception algorithms can

be fooled by glare on the objects even at sunset/sunrise [10].

As can be seen in Fig. 1, a mathematically generated glare

on the windshield and a naturally thrown specular highlight

on the bonnet of a jeep are making the image being mis-

classified as a ‘Television’ and ‘Barrel’ respectively. We

will also observe in this study that the modern-day classi-

fiers fail even though the highlight is in the background and

not directly on the subject. Therefore, it becomes necessary

to consider a specular highlight as a natural adversary and

examine its effect on the vision tasks.

Thus, we introduce a study of how often a specular high-

light can affect a deep neural network (DNN) classifier’s

performance, bringing out the need to revisit our under-

standing of the faults of a typical classifier. We do this by

not considering this advesary as an ‘attack’, but an often

unnoticed natural phenomenon affecting the performance

of algorithms. We first demonstrate that the specular high-

lights act adversarially on various known DNN classifiers

by introducing multiple artificially generated specular high-

lights on images with varying locations and sizes. We then

confirm it through collection of images which have specular

highlight generated by flashing of torch on printed images.

We further analyze if finetuning the networks with the pre-

viously failed specular images will be helpful to improve

the performance of the classification. Finally, we do an ac-

tivation mapping analysis on both the original and specular

highlight affected images and find the attention shifts some-

what responsible for the model mispredictions. Earlier,

Hendrycks et al. [18] did introduce natural adverasary as

something to bother about, but they don’t specifically iden-

tify particular adversaries and try to address them. There-

fore, through this work, we wish to begin a novel line of

research considering specular highlights as potential natural
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adversaries and try to computationally model them, so that

they can be taken care of. The related datasets, ImageNet-

AH and ImageNet-PT, can be found at:

https://github.com/vanshikavats9/specular-adv

2. Related Work
2.1. Adversarial Attacks and Examples

Even the most powerful classifiers can be fooled into

mis-predicting a class by introducing a simplest of aber-

ration in the image captured. This was shown by Biggio

et al. [4] using gradient based approach. Later, studies

were demonstrated in formulating an adversarial attack with

only a slight change in the pixel values [31], and then by

fast gradient sign method [15]. Carlini et al. [6] introduce

separate adversarial attacks on three different distance met-

rics. Along with these careful and optimised adversarial

attacks, research has been done to generate real life exam-

ples of an adversary. Eykholt et al. [11] showed how the

stop-signs classification gets affected by introducing small

physical perturbations to the road signs which don’t inter-

fere with the human sign inference capability. Other studies

show how simply digitally placing a random unrelated patch

on the images can make it an adversarial image, thereby

fooling the classifier [5], [32]. Hendrycks et al.[18] intro-

duce a dataset of challenging images which are hard to clas-

sify by ImageNet pretrained classifiers even after being in

the ImageNet-1K set. They adversarially select the sam-

ples which were fooled by ResNet-50 DNN model and also

removing the samples which had a confidence of at least

15% in the correct class. This way, a carefully constructed

dataset is empirically curated which gives very hard to pre-

dicted ImageNet samples. On the contrary, we present spec-

ular highlight as a natural phenomenon which can occur

anywhere and anytime in the real world, affecting the clas-

sifiers’ performance.

2.2. Specular Highlight

Specular highlight is a natural phenomenon which oc-

curs as a bright spot on the objects when shined on by a

light source. Its presence has proven to be a performance

degrader in few of the computer vision tasks such as pixel-

wise semantic image segmentation [1] and object detection

[3], [13]. However, the effect of a specular highlight on

image classification tasks has been underexplored. It be-

comes necessary to make our models robust to the glares

and highlights which can affect our computer vision class

prediction tasks in the real world scenarios, as mentioned in

Sec.1. We thus aim to study how the specular highlight on

the images degrades the performance of the DNN classifiers

and give an insight about the need to address this robustness

problem [18]. We show how the images were predicted cor-

rectly without the specular highlight, but as soon as we put

a speckle on the images, the classifiers start to yield wrong

predictions.

2.3. Class Activation Mapping

Class activation mapping is used to reveal the reason

(model attention area) behind the deep learning model deci-

sions. Grad-CAM [27] is one such method which uses the

gradients of the targets to provide localized heatmap of the

last convolutional layer. Grad-CAM++ [7] is an improve-

ment on Grad-CAM analysis with better localization. They

are now extensively being used in object localization and

identification in combination with Mask-RCNN [22], and

with other modifications such as Axiom-based grad-CAM

by scaling gradients by normalized activations [14]. We use

Grad-CAM++ due to its widespread and reliable use.

3. ImageNet-AH and ImageNet-PT
We present two datasets ImageNet-AH and ImageNet-

PT, demonstrating the effect of specular highlight on the

performance of the classifiers, using augmentation and

torch flashing.

ImageNet Augmented Highlight (ImageNet-AH) is a

collection of specular highlighted images (using augmenta-

tion) with specular highlights at various locations and inten-

sities. Containing ∼142,000 adversarially affected images,

this specially curated dataset contains those specular aug-

mentations that fooled the classifiers into making a wrong

decision but had their original images (Io) correctly classi-

fied (say Is,o). This will help us to claim that when we put

a specular highlight on the image, the models change their

decision towards a misclassification. The dataset is curated

in such a way that we get a pool of failed images, Is,o , mis-

predicted by any of the pre-trained classifiers considered in

this study. The information of each failure (e.g. location

and intensity of specular highlight) along with details of

the network that misclassified it is stored in their meta-data.

We select the same subset of 200 classes in ImageNet-1K

pointed out by [18] such that the difference between them is

prominent and the errors highlight the fault of the classifier.

For example, a classifier wrongly classifying “ostrich” as a

“porcupine” does more harm than it misclassifying “Nor-

wich terriers” as “Norfolk terriers”. Care is taken to avoid

the rare classes such as “snow-leopard” and furthermore re-

duced overlapping classes like “honeycomb”, “bee”, “bee-

house” etc. The full list of 200 classes spanning over broad

categories is listed in the Supplementary Material.

ImageNet Print+Torch (ImageNet-PT) is a collection of

555 images with actual specular highlights (obtained by

flashing physical torch) whose original image was correctly

classified but one of the augmentations was wrongly clas-

sified by ResNet101. This helps to narrow down our selec-

tions. Since curating this dataset is more of a manual la-

bor, a subset of 10 classes from ImageNet-AH is chosen to
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Figure 3. Specular Highlights on Natural Images to form ImageNet-PT. (a) 10 such classes used in ImageNet-AH are (b) printed out on a

glossy paper and (c) specular highlights are formed using flashlight

make the experiment feasible as the samples were needed to

be physically printed out on a glossy paper and actual light

had to be thrown on them to make a speckle of highlight on

the image. ResNet-101 is chosen because of its widespread

use and good classifier performance on ImageNet-AH.

The performances are compared according to the Top-1

accuracy across the experiments between images with and

without specular highlights. The analysis is also done to

know which areas on the image contribute more to the per-

formance degradation.

3.1. ImageNet-AH

To curate ImageNet-AH, each of the images in consid-

eration was introduced to mathematically generated specu-

lar highlight to test the effect of the adversary. Each im-

age was divided into a 5x5 grid and a highlight was intro-

duced as a 2-dimension (2D) Gaussian distribution at the

center of each of the grid cells (see Eq. 1). Here, ∀ x, y
∈ dim(image), we move the locations of the Gaussian ker-

nel by shifting the center coordinates x0 and y0. The in-

tensity of the highlight is varied with respect to σx = σy =

σ is the Standard Deviation (SD) of the distribution, vary-

ing as a step of 10 i.e. SD=10, 20, 30, 40 (Fig. 2). With

4 such unique SD intensities and 25 locations for specu-

lar highlights, we get 100 variations for each image. Top-1

accuracies are measured by comparing the original image

dataset without the highlight and further quantifying how

many specular variations of each image fail, differing in in-

tensities and location.

f(x, y) =
1

2πσ2
exp

(
− 1

2σ2
(
(x− x0)

2 + (y − y0)
2
))

(1)

The final dataset is curated in a way that the models make

correct predictions on the original images without the spec-

ular highlight, but fail to classify into correct class when

adversarially affected by the specular highlight.

3.2. ImageNet-PT

For ImageNet-PT, a subset of 10 image classes from

ImageNet-AH, each containing about 10 images per class,

is printed on glossy photography papers. The images are

such selected that they are originally classified correctly

by ResNet-101 in Experiment-I but their specular highlight

variation failed. This way, the current experiment would

be able to prove the claim made by the previous experiment

about the failure classifiers in the case of specularly affected

adversarial images. The aim is to show that the natural im-

ages are adversarially affected by an actual specular reflec-

tion and can fool the classifiers into misclassification. Vari-

ous alterations of natural specular highlights are thrown on

the printed images via a smartphone’s flashlight to mimic

an actual scenario of the objects/images affected by these

adversaries (Fig. 3). The accuracies of with and without

specularly affected images are reported in a similar manner

as the mathematically generated highlights.
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3.3. Heatmap analysis

Class activation mapping using Grad-CAM++ is used

in this study to analyse which areas are the models inter-

ested in looking at to make their prediction. Grad-CAM++

is an improved version of Grad-CAM which uses gradient

weighted class activation mapping looking at the last convo-

lutional layer of a deep neural network to produce localiza-

tion maps highlighting the attention regions responsible for

making the class predictions. The heatmaps are generated

for both the original images and their specular counterparts

to see if the focus areas for both lie in the same location or

are they also affected by the presence of a specular high-

light.

4. Experiments
In this study, we emphasize the effect of specu-

lar highlights on eight deep learning models known for

their image classification prowess, namely VGG16[29],

VGG19[29], ResNet-50[16], ResNet-101[16], DenseNet-

121[20], InceptionNet-v3[30], MobileNet-v2[26], and

Xception[8]. The study spans over two variations of the

specular adversary - mathematically created specular high-

lights and actual highlights on natural images. With each

of the variations, we try to show how a small light spot on

the images can easily fool a classifier even though they are

easily distinguishable by the human eye.

4.1. Experiment I - Augmented Specular Highlights

A subset of 200 classes is taken out of ImageNet-1K’s

1000 classes according to Hendrycks et al. [18] ImageNet-

1K’s validation set is chosen for this experiment as the im-

ages are available along with their class labels. Each class

has 50 images of various dimensions, amounting to a total

of 10,000 original images.

To make a simulated specular highlight on images, the

images are divided into a 5x5 grid and a Gaussian noise

with varying SD is introduced in each of the 25 grid cell

locations (Eq. 1). SD=10, 20, 30, and 40 are taken into

consideration for each grid cell location, making it a total

of 100 specular variations per image. The top-1 accura-

cies of the model predictions of the original images are av-

eraged over the classes as shown. For specular adversary

performance on the affected images, the accuracies are av-

eraged out from the 100 variations per image. Analysis is

also done with respect to the instances where even 1 out of

100 variations fail and where at least 5 variations fail to con-

sider a model prediction failed, both proving that this spec-

ular highlight works as an adversary to the image. Finally,

the specular images mis-predicted by the models with their

original image counterparts predicted correctly are curated

in ImageNet-AH. As per the statistical analysis, 15.6% of

the images had specular highlights of SD = 10, 21.0% had

SD = 20, 27.7% had SD = 30 and the most (35.6%) had

SD = 40. As we can see, the proportion increases with the

SD, which is expected as larger portions in the images are

getting blocked by the highlight.

4.2. Experiment II - Actual Highlights on Natural
Images

To support the claim made by the synthetic highlights in

Experiment-I, the images are tested with natural specular

highlights. The images are printed out on a glossy pho-

tography paper and actual specular reflections are made by

throwing a smartphone’s flashlight on them. The images

with this actual highlight is clicked by a camera and tested

on the classifiers. To make this experiment feasible, a sub-

set of 10 classes is selected to be printed from the original

200 classes. 5 variants of specular highlight at different lo-

cations are thrown on them. The performance is measured

in a similar way as Experiment-I. Analysis is also done by

thresholding the failure of the model prediction with at least

2 variations mispredicted.

4.3. Experiment III - Fine-tuning with Specular Ad-
versaries

Original images correctly detected by each classifier but

failing in their specular counterparts in Experiment I are

saved and are used to fine-tune the default classification

models to see if the performance can be improved. Training,

validation and test sets from the 200 classes are separately

formed for each classifier according to the number of im-

ages failed by each in a ratio of 60:20:20. Instead of just

randomly dividing the specularly affected images into three

sets, the division is done in a stratified manner. Care is taken

to put all specular variations of a single original image into

one set. This way, one kind of sample variations in one set

would be unseen in the other sets giving a better intuition

into the performance of the models.

Performance is also checked with finetuning on the

datasets normalised with their respective means and stan-

dard deviations per channel. Further, we introduce self-

attention into the networks using Squeeze-and-Excitation

(SE) mechanism [19] to leverage the inter-channel depen-

dencies and increase their representational power. The per-

formance on the test set is compared on the various methods

of finetuning used and contrasted with using the networks

directly without finetuning.

4.4. Experiment IV - Activation Mapping

We study the class activation maps of both original and

adversarially affected images to compare how the models

are perceiving the information available on the images. We

use Grad-CAM++ [7] and analyze where and what the mod-

els are looking for to make a prediction. Grad-CAM++ out-

puts the heatmap of attention areas in each image. To sepa-
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Figure 4. Examples of misclassification on specular highlight af-

fected images on artificial specular highlights (Exp.I). The actual

class is represented by black text and the incorrect prediction is

represented by red text on the top of each image

Figure 5. Performance of models for predicting original and artifi-

cial specular highlight affected images as the top-1 accuracy. We

consider two scenarios: a model is considered failed if (i) it mis-

classifies even one specular variation (S>=1) of the original image

or (ii) it wrongly predicts at least 5 specular variations (S>=5)

rate the most sought areas as determined by Grad-CAM++,

binary thresholding is applied on the heatmaps with a cut-

off at the third quartile (Q3) value of the pixel values in the

heatmap (see Fig. 9). This gives an approximate area of

which information contributes the most to the model pre-

diction. The same procedure is followed for both original

and specularly affected images in ImageNet-AH (Fig. 9(a))

and ImageNet-PT (Fig. 9(b)).

The thresholded heatmaps are divided into 5x5 grids and

the cells with the maximum non-zero pixel (max-cells) val-

ues are determined. The max-cells of the original images

are compared with the max-cells of the specular images.

Specular variations for each original image are such chosen

that they had earlier failed the prediction test in Experiment-

I and II. This helps us to analyze how different each model

is looking at the original and its specular highlight variation.

Percentage of the max-cells of specular variations failing to

match the max-cell of the original images per class is calcu-

lated for each model which indicates that the specular high-

lights cause the models to focus on a different location as

compared to original distribution which might be the rea-

son for their prediction failure.

Figure 6. Examples of misclassification on specular highlight af-

fected images on natural specular highlight (Exp. II). The actual

class is represented by black text and the incorrect prediction is

represented by red text on the top of each image

Figure 7. Performance of models on natural specular highlight af-

fected images. We consider two scenarios: a model is considered

failed if (i) it misclassifies even one specular variation (S>=1) of

the original image or (ii) it wrongly predicts at least 2 specular

variations (S>=2)

5. Results

The performances on the original and specular highlight

adversarially affected images are compared. Fig. 4 shows

some of the misclassifications due to the effect of a spec-

ular highlight to form ImageNet-AH. It can be observed

that it’s possible that a small highlight anywhere on the im-

age can fool a classifier into making a wrong prediction.

A detailed analysis is shown in Fig. 5 where we compare

each model with respect to the Top-1 accuracy for origi-

nal and their specular variations. An round figure of ∼20%

drop in the accuracy is observed if we consider the model

fooled when at least one specular variation gets misclassi-

fied (S>=1). There is ∼10% drop in the accuracy when a

model is considered fooled if it misclassifies at least 5 or

more specular variations (S>=5). Note only a slight effect

in the average accuracy of the specular highlight variation

failure. This is because of the average calculation strategy

in case of 100 specular variations for each original image.

For instance, if a single original image gets misclassified by

a classifier, it is either 100% correctly classified or 0% cor-

rectly classified (wrong prediction). However if, out of the

100 specular highlighted variations of a wrongly predicted
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original image, even five get correctly predicted by chance,

the accuracy will be 0.05% which is more than the original

single image accuracy of 0%. Thus, S-average gives a lesser

idea of the actual effect of a specular adversary.

(a)

(b)

Figure 8. Effect of Fine-Tuning (FT) the models on the (a) aug-

mented specular highlight images from ImageNet-AH and (b) nat-

ural specular highlighted images from ImageNet-PT. Analysis is

also done with normalizing by specific means and standard devia-

tions and by introducing squeeze-and-excitation (SE) block to the

networks.

A similar pattern is observed when we test the models

on the natural specular highlights on the printed images in

ImageNet-PT (see Fig. 6, Fig. 7). The already low accuracy

on the original images can be a result of different lighting

conditions, different angles of capture, or just due to the

printing of the digital image as mentioned in Kurakin et al.

[24]. There is ∼12% drop is observed in the average accu-

racy, and a ∼35% and ∼20% drop if at least one variation

fails (S>=1) and at least two variations fail (S>=2) respec-

tively. Fine-tuning on the test split of the artificial specular

highlight image datasets does not show enough improve-

ment, averaged at 18% (Fig. 8(a)). Only InceptionV3 and

Xception models show an improvement of >30% with fine

tuning. Some improvement is seen when finetuned on the

natural specular highlighted images (Fig. 8(b)). However,

this might not be a true concluding insight because of a

smaller test set of only 109 samples.

Normalizing the images by means and standard devia-

tions of the respective datasets for each channel and then

finetuning increases the performance by more than ∼5%

compared to simple finetuning for all classifiers other than

VGG variations and ResNet-50 for ImageNet-AH and sig-

nificantly in VGG-16 and VGG-19 in ImageNet-PT. On the

other hand, introducing the SE self-attention blocks in the

fine-tuning layers does not give a clear trend in the improve-

ment or the degradation of performance making it classifier-

specific.

Activation analysis is also performed to look at where the

models are paying attention to in case of the original images

(i)

(ii)
Figure 9. Activation analysis on the (a) original images (top row)

of (i) ImageNet-AH and (ii) ImageNet-PT and their specular coun-

terpart (bottom row). (b) Images superimposed with their (c)

heatmaps depicting the most focussed areas. Heatmaps are divided

into a (d) 5x5 grid and binary thresholded at Q3. The location

of the max-cells are compared for the original and their specular

counterparts. Here, it is seen that the specular adversary made the

model concentrate on the wrong object and might contribute in

making a wrong prediction (in red)

Figure 10. Class activation mapping analysis on the original and

specular images in ImageNet-AH and ImageNet-PT. The bars in-

dicate the percentages of sets of original-specular images whose

attention location areas do not match

and their specular variations in ImageNet-AH (Fig. 9(a))

and in ImageNet-PT (Fig. 9(b)). It is observed that more

than at least 65% of the VGG variations and ∼30% for

rest of the models, the comparison original-specular sets for

each model classifier exhibit a different location of focus
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Figure 11. Percentage of highlights directly affecting the fore-

ground object (inside the bounding box) or the background (out-

side the bounding box).

Figure 12. Examples of misclassification on the affected images

when specular highlight is not directly on the object. The actual

class is represented by black text and the incorrect prediction is

represented by red text on the top of each image

areas (Fig. 10) for ImageNet-AH. This might be one of the

reasons the classifiers make a different prediction when it

sees a normal original image vs when we’ve put a specular

highlight on it.

Since the ImageNet dataset also contains bounding box

annotations for object detection, we make use of them to

analyse whether the specular highlight put on the object

foreground or the background. This is done to check if

only the prominent objects in the images occluded due to

the highlight are causing the mispredictions or the images

are being affected even from the highlight far from the class

deciding object. As observed from the statistics from all

the models (Fig. 11), an average 59% of the highlights were

inside the object bounding boxes, meaning, 59% of images

had their main class objects being partially or fully occluded

for the models to make their mispredictions. However, a

massive 41% of the mispredicted images had their high-

lights far away from the object. This is a huge percent-

age and a matter of great concern that the images are be-

ing specularly affected even though the highlight is not di-

rectly on the class-defining object but on the surroundings.

Fig. 12 shows some examples of the images being mispre-

dicted with the specular highlights not being directly on the

object. Also, on an average, 25 variations of the original

images failed for all the models.

Inspection is also done to look for the location where a

specular highlight put on the image would affect the predic-

tion performance of the classifier the most. It is observed

that a speckle on and near the center of the image will make

the most images make a wrong prediction (Fig. 13). Since,

most of the object instances are situated near the centre

of the images, hence, a specular highlight present in that

region can affect the prediction performance adversarially.

Nevertheless, the above results indicate that specular high-

light has the potential to act as an adversary and fool the

classifiers into making the wrong predictions about the im-

age class.

Figure 13. Heatmap depicting the locations in a 5x5 image grid

where a specular highlight affects the image. Most adversarially

affected images with wrong predictions have a specular highlight

at their center, followed by the surrounding neighbourhood.

6. Conclusion
In this study, we show that the natural phenomenon of

specular highlight on an image can adversarially affect the

performance of modern-day classifiers. We demonstrate

this by introducing two new datasets: ImageNet-AH, which

is a mathematically induced specular highlight dataset, and

ImageNet-PT, a dataset curated by flashing natural high-

light on the images. We also see how specular highlights

can shift the attention significantly. To that end, finetun-

ing our models with various adaptations of the specularly

affected images and networks could also not improve the

performance enough with respect to what is desired. This

underscores the importance of addressing the issue to im-

prove the robustness of the models in real-world scenarios.

Future studies will be directed towards exploring mitigation

strategies to overcome the challenges posed by specularly

affected images.
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[1] Pablo Arbeláez, Michael Maire, Charless Fowlkes, and Ji-

tendra Malik. Contour detection and hierarchical image seg-

mentation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 33(5):898–916, 2011. 1, 3

[2] Alessandro Artusi, Francesco Banterle, and Dmitry

Chetverikov. A survey of specularity removal methods.

Comput. Graph. Forum, 30:2208–2230, 12 2011. 2

3609



[3] Shida Beigpour and Joost van de Weijer. Object recoloring

based on intrinsic image estimation. In 2011 International
Conference on Computer Vision, pages 327–334, 2011. 1, 3

[4] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nel-
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ing automated surveillance cameras: Adversarial patches to

attack person detection. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 49–55, 2019. 3

[33] Wenguan Wang, Jianbing Shen, and Fatih Porikli. Saliency-

aware geodesic video object segmentation. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3395–3402, 2015. 2

[34] Y. Zhong, X. Liu, D. Zhai, J. Jiang, and X. Ji. Shadows can

be dangerous: Stealthy and effective physical-world adver-

sarial attack by natural phenomenon. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 15324–15333, Los Alamitos, CA, USA, jun

2022. IEEE Computer Society. 1

3611


