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Abstract

The classification of gigapixel histopathology images
with deep multiple instance learning models has become
a critical task in digital pathology and precision medicine.
In this work, we propose a Transformer-based multiple in-
stance learning method that replaces the traditional learned
attention mechanism with a regional, Vision Transformer
inspired self-attention mechanism. We additionally propose
a method that fuses regional patch information to derive
slide-level predictions. We then show how this regional ag-
gregation can be stacked to hierarchically process features
on different distance levels. To increase predictive accu-
racy, especially for datasets with small, local morphologi-
cal features, we also suggest a method to focus the image
processing on high attention regions during inference. Our
approach is able to significantly improve performance over
the baseline on two histopathology datasets and points to-
wards promising directions for further research.

1. Introduction
Applying conventional computer vision models to gi-

gapixel images proves to be difficult because of the large

computational capacity required. The multiple instance

learning (MIL) paradigm [9] allows treating an image as

a non-exhaustive bag of sampled image patches, which re-

tains the image label. A MIL-model enables generating im-

age level predictions by either processing the patches in-

dividually or as an aggregated bag representation, thereby

drastically reducing input dimensionality. A variety of

MIL-based approaches working on instance-level, bag-level

or a combination of both have been applied to a range of

use cases [1, 4, 12]. This holds especially true in the med-

ical domain [7, 27], where there exists an abundance of

high-resolution imaging data. MIL is commonly applied to

such images by randomly sampling a bag of image patches

to represent the image. However, the incomplete, sparse

and often noisy nature of random patch-sampling remains

a challenging hurdle and a limiting factor to predictive per-

formance [4, 12].

Most current MIL approaches employ some form of

attention-based bag aggregation [15]. They generally fol-

low three main steps: First, the image patches are encoded

into a latent space by a patch-embedder, usually a convolu-

tional neural network (CNN). Secondly, the bag of patch-

embeddings is aggregated into a single bag-level represen-

tation using a learned attention mechanism. Finally, a lin-

ear classifier derives a prediction from the bag embedding.

There are three main advantages to this attention-based ar-

chitecture: it greatly reduces the dimensionality by embed-

ding patches and aggregating bags, it is invariant to the size

and order of the bags and it provides high interpretabil-

ity through the generated attention weights. Research has

shown this approach to generalize across a variety of use

cases in digital medicine [12, 14, 27].

Subsequent methods extend and improve attention-

powered models applied to MIL [19]. In recent research,

Transformers [28] have become the state-of-the-art for

attention-based learning across many domains, including

the Vision Transformer (ViT) for computer vision [10]. In-

put embeddings are passed through self-attention modules,

where they are aggregated using a learned classification to-

ken. Transformer-based models enable a highly effective

application of attention to MIL problems [24, 22, 21]. The

RegionViT [5] separates patches into regions and facili-

tates global information exchange through a regional to-

ken. Chen et al. [6] even demonstrate a method that allows

the processing of complete whole slide images by aggre-

gating increasingly large regions in multiple steps through

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

3952



Figure 1. Overview of strategies (patch/region sizes are increased for better visualization). Every depicted approach samples a total of

256 patches. (Left) Standard random global sampling, where all patches are selected randomly across the image. Captures the largest

amount of variety, but does not retain any information about regionality. (Center) Regional 2 × 2 sampling. This approach does pertain

regional information by selecting regions, but still covers a relatively large spread of image information. (Right) 64 × 64 sampling, used

for multi-level aggregation. The large region-size is able to densely capture large morphological structures, but does thereby lead to a less

representative sample of the full slide.

a learned classification token. However, ViT-based models

can be computationally costly. They therefore usually re-

quire expensive contrastive pre-training and frozen weights

for most layers. By sampling patches regionally, we reduce

the required memory footprint drastically, allowing us to

apply Transformers for end-to-end model training.

Various approaches also incorporate a variant of local

attention based patch aggregation, reducing computational

complexity and allowing the model to exploit information

about patch locality [6, 29]. Konstantinov et al. [16]

propose a mechanism that enriches patch embeddings by

adding an aggregated representation of the patch neighbor-

hood based on patch similarity. However, using simple dot-

product attention to aggregate patches can lose valuable in-

formation during the aggregation process. We address this

employing a Vision Transformer-like encoder operating on

embedding-level for bag aggregation. Because using the

Transformer to embed pixel-level information directly, as

done in the regular ViT, leads to high computational de-

mands, we use a CNN to derive patch embeddings.

Research has further shown that processing image

patches in multiple stages can improve predictive perfor-

mance [11, 25]. Myronenko et al. [21] aggregate features

on different scales by downscaling the inputs in several

steps using a CNN backbone. We propose a novel method

of multi-level hierarchical aggregation that does not require

downsampling of patches but instead enables processing of

variable region sizes by iteratively aggregating increasingly

large regions.

There exist several methods of pre-selecting relevant

patches to guide model predictions. However, they usu-

ally require specialized architectures or additional steps

during training [17, 18, 30, 23]. To leverage patch-level

weights without changes to the model architecture, we in-

stead propose a clustering based high-attention patch selec-

tion method that can be used during inference to signifi-

cantly improve model performance.

Contribution

This work aims to fuse recent developments in Trans-

formers and MIL, by contributing a novel, regional, hier-

archical Transformer architecture for efficient model train-

ing on gigapixel images. We demonstrate that our approach

can leverage regional patch aggregation and the hierarchi-

cally fusion of local information on multiple levels to sig-

nificantly improve over a naive global patch aggregation

baseline [15]. Furthermore, we propose an easily transfer-

able model-agnostic method for processing high-attention

patches during inference, demonstrating large performance

improvements on a dataset with small regions of interest.

Our results showcase the potential of the proposed method-

ological ideas and build the groundwork for further experi-

mentation and benchmarking.

2. Method
2.1. Multiple Instance Learning

In multiple instance learning, there exist bags of un-

ordered instances X̂ = {x1, ..., xk}. When applied to com-

puter vision, each instance xk is a subset of an input image

X , usually corresponding to a comparatively small patch of

X . Each bag is given the label Y associated with X . The

labels yk of individual instances are unknown during train-

ing. MIL models aim to determine Y by inferring the in-

stance labels yk or by aggregating the instances into a bag-

level representation Z from which Y can be deduced. In

attention-based MIL, this bag representation Z is based on

a weighted sum of all instances inside the bag,

Z =
K∑

k=1

akxk, (1)

where the attention is based on the dot-product similarity

of xk in regard to a learnable parameter C with the same

dimensionality as xk:
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Figure 2. Proposed model architecture. A feature extraction module, usually a pretrained CNN, embeds each patch separately. Embeddings

are then pooled locally by a Transformer using learnable class tokens. If multiple transformer modules are stacked, the class token is only

appended in the last module. The weighted sum with regard to the class token can be considered as an embedding for the whole region.

This local pooling can optionally be repeated multiple times to aggregate larger image regions. Pooled regional aggregations are finally

aggregated on a slide level using a global Transformer module to generate slide-level representations. If multiple pooling-levels are used,

each level’s tokens are aggregated into a separate global representation which are then concatenated. The full slide representation is fed into

a linear classifier. In our experiments, weights between the regional modules are shared, while the global module uses separate weights.

ak =
exp(Cx�

k )∑K
i=1 exp(Cx�

i )
. (2)

We use attention-based MIL applied to patches sampled

randomly from whole slide images (WSI) as done in [15]

as our baseline. Each patch is a separate instance, which is

represented by an embedding derived using a CNN. Note

that we benchmark our method against a common, but con-

ceptually simple baseline on two binary classification tasks.

This is done on purpose, due to the paper’s focus on demon-

strating novel conceptual ideas, which can be incorporated

into both existing and future research. An in-depth hyper-

parameter tuning and evaluation of maximum performance

against other state-of-the-art models and across a variety of

use cases was considered out-of-scope, but remains a topic

of future research.

2.2. Transformer based aggregation

For the Transformer model, we can formulate the atten-

tion mechanism as

Z = Attention(Q,K, V ) = softmax(QK�)V, (3)

where Q, K and V all represent the input bag X̂ [28]. In

practice, projecting Q, K and V linearly for h multiple

times for different attention heads has been shown to im-

prove model performance [28]. The resulting aggregates for

each head are concatenated and projected back to the origi-

nal input dimension d. As described in Equation 2, the bag

classification is based on a learnable parameter C with the

same dimensionality d as the input tokens in X̂ . The Vision

Transformer (ViT) [10] uses such a class token for classi-

fication. Note that the self-attention mechanism described

in Equation 3 is applied to all input tokens, and therefore

outputs aggregations with regard to each token in the bag.

It is therefore possible to stack multiple attention layers, as

the number of input tokens stays consistent. The class to-

ken C is only appended to the last layer in such cases, as it

does not provide relevant information in previous layers. In

our experiments, however, we only use one such attention

layer and consequently only consider the C-based aggre-

gated embedding for further processing in later stages.

The proposed model architecture is depicted in Figure 2.

Instead of feeding flattened image patches into the model

as done in the standard ViT approach [28], we first em-

bed all sampled patches using a Resnet18 [13] pretrained

on ImageNet [8]. The fully connected layer at the end is

removed to obtain 512-dimensional image-embeddings for

each patch. For our experiments, we choose a ResNet18 for

its relatively small memory footprint to enable online train-

ing of the patch-embedder. The architecture and pretraining

of the patch embedder can be considered tunable hyperpa-

rameters.

2.3. Sampling

Instead of randomly sampling patches globally, we first

sample N subregions from the input image. Patches are

then sampled from from each subregion separately. Each

subregion has the same size as determined by the model

hyperparmeters. In a single level model, each subregion’s

patches are aggregated into a single embedding by the re-

gional ViT using the learned class token C. All subregional
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Figure 3. Illustration of embedding aggregation for a 3-level model with 2 × 2 regions. Each green square represents one 8 × 8 patch

region. The depicted flow shows how one such region is reduced from 64 embeddings to a single aggregated representation. The size of

the full region (green) depends on the number of aggregation levels (3) and the size of the aggregated regions (2× 2) on each level, which

are configurable hyperparameters. The pooled embeddings on every level can be passed into the global ViT module (see Figure 2).

embeddings are then passed into the global ViT to derive

a slide-level representation. When using multiple levels,

patches inside a subregion are pooled multiple times based

on proximity. Figure 3 depicts this process for a three-level

model with 2 × 2 aggregation: first, all 2 × 2 regions are

pooled into a single embedding. This process is repeated

at the next level, aggregating 2× 2 embeddings, each itself

representing a 2× 2 region, into a single embedding. These

new embeddings, each representing a 4×4 patch region, are

then pooled again on level 3 to derive a single embedding

for the 8 × 8 subregion they belong to. At every level, the

regionally pooled embeddings are also fed into the global

ViT to derive a slide-level representation based on each ag-

gregation level. This aims to allow the model to consider

local interactions at different distances and creates an ar-

tificial ”zoom-out” that processes features at different dis-

tances, thereby enabling it to learn morphological features

larger than individual patches.

We can derive the total side length (TSL) in number of

patches of a sampling region depending on the side length

S of the aggregation window per level and the number of

levels L as shown in Equation 4:

TotalSideLength = S ∗ 2L−1. (4)

In consequence, increasing S can drastically increase the

total region size: in a 3-level model (L = 3), a base region

patch width of S = 2 leads to a TSL of 8 and therefore a

region with 64 total patches. An increase of S by 1 already

increases the TSL to 27, resulting in a region covering 729

patches. It is therefore clear that sampling on every level

is required for higher values of L and especially S. In fu-

ture research, adjustable aggregation window sizes per level

could also be explored.

For our experiments, we use both 2 × 2 (S = 2) and

3 × 3 (S = 3) base patch regions. To enable comparabil-

ity, we sample 4 patches per region in both approaches. We

thereby can compare how the size of the region and the as-

sociated sparsity effects model performance. For the multi-

level experiments, sampling is performed at all levels, i.e.

in a 3-level 3 × 3 − 9 × 9 − 27 × 27 model, a total of 64

patches are selected from within the 27×27 region. We ad-

just the number of regions across all experiments such that

there are always 256 patches sampled per whole slide image

per epoch.

We use identical architectures for global and regional
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Table 1. Experiment AUC results. For all patches results, all non-empty patches from the input image were passed through the model. For

top patches, only selected high attention patches were used as input as described in section 2.4.

Patch CAMELYON16 TCGA-THCA
Model selection Mean Best Mean Best
(1) Baseline [15] All 0.764 ± 0.050 0.845 0.844 ± 0.010 0.855

Top 0.865 ± 0.020 0.886 0.853 ± 0.007 0.863

Single level (ours)
(3) 2× 2 All 0.763 ± 0.035 0.833 0.852 ± 0.013 0.869

Top 0.898 ± 0.018 0.930 0.851 ± 0.015 0.870

(4) 3× 3 All 0.822 ± 0.039 0.873 0.855 ± 0.013 0.872

Top 0.914 ± 0.023 0.949 0.853 ± 0.025 0.878

Multi-level (ours)
(5) 2× 2− 4× 4 All 0.766 ± 0.055 0.864 0.882 ± 0.012 0.898

Top 0.867 ± 0.026 0.897 0.874 ± 0.019 0.897

(6) 2× 2− 4× 4− 8× 8 All 0.735 ± 0.093 0.844 0.891 ± 0.014 0.905
Top 0.823 ± 0.042 0.892 0.888 ± 0.018 0.905

(7) 3× 3− 9× 9 All 0.777 ± 0.046 0.845 0.880 ± 0.010 0.893

Top 0.832 ± 0.030 0.863 0.875 ± 0.011 0.889

(8) 3× 3− 9× 9− 27× 27 All 0.799 ± 0.028 0.839 0.887 ± 0.017 0.905

Top 0.857 ± 0.041 0.899 0.884 ± 0.015 0.899

ViT modules, but only share weights between the regional

modules, while the global ViT retains a separate set of

weights. This is done to train the model to recognize similar

structures at different scales. However, the individual con-

figurations, including number of encoders, the size of the

hidden dimension, the number of attention heads and the

extent to which weights are shared between modules are ad-

justable hyperparameters and can be tuned further. Because

the model architecture is inherently designed to aggregate

patches sampled from the same region and thereby implic-

itly introduces information about regionality, we do not use

positional embeddings. Exploring the use of relative posi-

tional embeddings for large region sizes could be subject to

further research.

2.4. Inference

During inference, the complete slide is tiled into regions

and the processed by the model. This is done by first com-

puting an embedding of all patches and then passing the

embeddings through the attention mechanism, thereby sig-

nificantly reducing the memory footprint.

Additionally, after deriving attention weights for all

patches in the first inference pass, we apply k-means clus-

tering with two centroids to the attention values to flexibly

select high-attention patches. This step can be considered

as fitting a univariate gaussian mixture model to estimate

two separate distributions of high-and low attention patches

respectively. We then repeat inference with all patch em-

beddings belonging to the low attention cluster zeroed out.

This method aims to reduce the effect of noise (i.e., irrel-

evant patches) on the prediction, especially in cases with

small regions of interest, where even a strong signal from

individual patches / regions can be diluted in the attention

based aggregation process.

2.5. Implementation Details

Models are trained for 50 epochs using the AdamW opti-

mizer with a learning rate of 2e-5 and a batch size of 2. In all

experiments, 256 patches are sampled per image per epoch.

All regional sampling methods sample 4 patches per lowest

level. We apply random augmentations on every patch in-

cluding horizontal and vertical flips, sharpness and contrast

adjusting and light blurring. All experiments are repeated

5-times using different seeds for sampling, but keeping the

train-validation-test split consistent.

2.6. Data

We evaluate our model on two publicly available datasets

containing WSI of H&E-stained tissue samples. The

CAMELYON16 dataset [3] depicts sentinel lymph nodes

containing breast cancer metastases. We keep the train-test

split predetermined by the dataset, resulting in 270 slides

used for training and 129 slides used for testing. Of the train

dataset, 85% is used for training and 15% for validation.

TCGA-THCA is a dataset of whole slide images of thy-

roid tissue provided by The Genome Cancer Atlas. The pre-

diction of V600E mutation status of the BRAF gene muta-

tions based on thyroid WSI has been subject of recent re-

search [2, 14]. It contains a total of 482 tissue slides, of

which 294 are labeled as BRAF positive. Of the data, 65%,

15% and 20% of cases are used for training, validation and

testing respectively.
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Figure 4. Comparison of two positive slides from CAMELYON16. As shown by the approximate visualizations of sampling regions, the

high-attention regions of interest can be very small, extending only across few patches. Because larger aggregation regions contain a less

representative sample of the full image, it is easy to see how small ROIs can be missed during sampling, hindering efficient model training.

Conversely, the value of our high-attention inference method can be directly seen for cases where only few patches are relevant. This is

also visible in the histograms of attention weight distributions. Both images show two peaks of high and low attention patches. However,

the upper image has relatively larger tumor regions with many relevant patches and therefore receives a positive score with high confidence

when predicting using all patches. For the lower image with a single small region with fewer positive patches, the prediction improves

drastically when processing high attention patches.

2.7. Preprocessing

All images are tiled into patches with an edge size of 157

micrometers, which are then resized to a size of 224 × 224
pixels. Empty patches are removed using threshold-based

filtering. Luminosity standardization followed by stain nor-

malization [26] is then applied to the patches to reduce vari-

ance between images caused by differences in staining pro-

cedures and equipment.

3. Results

The results of our experiments are shown in Table 1. On

the CAMELYON16 dataset, we observe a notable perfor-

mance increase over the baseline for both single-level re-

gional aggregation models. Especially the 3 × 3 model

achieves the highest average AUC of 0.914 as well as the

highest AUC observed overall of 0.949. We assume that

the 3 × 3 region size is well suited for the morphological

size of tumors in the dataset. Additionally, the sparsity of

sampling in the 3 × 3 regions, compared to 2 × 2, might

allow the model to better handle patches which are not di-

rectly adjacent. In contrast, multi-level approaches yield a

slightly reduced AUC when increasing the total aggregated

region size, while also having larger standard deviation in

results. We hypothesize the better performance of regional,

Transformer based aggregation on small regions is driven

mainly by the small size of regions of interest in many of

the images in the dataset. As most images contain tumors

spanning across only few patches, there is little potential

benefit by aggregating larger regions.

On TCGA-THCA, the single level approaches do not

perform notably better than the baseline. However, we see

a significant improvement of results when sampling and ag-

gregating larger regions in multiple steps. The three-level

approaches in both cases outperform the respective two-

level approaches. As the total region size of 9 × 9 for ex-

periment (7) is larger than that of (6), we theorize that the

additional aggregation layer does help to improve predic-

tive performance by exploiting the joint information con-

tent across a larger region. The results point towards the in-

creased ability of the multi-level model to leverage the com-

paratively large tumor regions in the TCGA-THCA dataset.

Furthermore, the effectiveness of 3-level approaches over 2-

level approaches suggests there is potential in deriving im-
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Figure 5. Predicted probabilities per slide, averaged across all seeds, using all patches and our high-attention inference strategy. Results

are based on the respective best performing model (see Table 1). The high-attention strategy moves predictions closer to the extremes of

0 and 1. This is especially true for CAMELYON16. For TCGA-THCA, the effect is less pronounced, which is likely to the much larger

amount of high attention patches in most images.

age representations at different ”zoom” levels.

For all our experiments, we report results on the full im-

age as well as for running inference only on high atten-

tion patches. We see significant differences in the effec-

tiveness of this approach between the two datasets. For

CAMELYON16, we find a notable improvement in AUC

both for the baseline as well as for all of our approaches.

As discussed above, this approach is likely particularly ef-

fective for CAMELYON16 because the signal of very small

regions of interest gets diluted by large amounts of noise

(i.e., patches with no relevant information about absence /

presence of tumorous tissue). An example of this can be

seen in Figure 4, where the prediction of the slide with a

small tumor area changes drastically. Conversely, we ob-

serve no positive effect of top patch inference on TCGA-

THCA, where tumor regions are much larger on average.

The results highlight the potential of the proposed inference

strategy, but also demonstrate that the expected gains are

highly dependent on the specific morphological challenges

present in any given dataset.

We were also interested whether selecting only high-

attention patches would move all predictions towards pos-

itive values. As shown in Figure 5, this is not the case.

The high-attention inference strategy does help to improve

model certainty, both for positive and negative predictions.

This indicates that the models are able to learn negative evi-

dence which indicate the absence of tumorous tissue. More

importantly, it therefore does show that performing infer-

ence on high-attention patches in negative slides does not

cause the model to raise the assigned probability, underlin-

ing the robustness of our method.

4. Conclusion

In this work, we have demonstrated a method of

regionally fusing patch embeddings to derive slide-level

predictions. We show the importance of fitting the approach

to the target dataset: For those with small ROIs, choosing a

small, highly local aggregation method leads to best results.

Datasets with large regions of interest containing complex

morphological structures can be handled effectively by

aggregating large regions in multi-step approaches. For

both datasets, we are able to apply our method to effectively

improve model performance compared to the baseline. In

this work, we also suggest a simple, easily transferable

method of performing inference on selected high attention

patches that can significantly improve predictive results

at little additional cost. Our results point towards several

promising directions for further research, including an

investigation into the effects of regional and global sam-

pling with different region sizes as well as the analysis of

the effects of noise on prediction results. Finally, future

research could explore hyperparameter tuning and absolute

performance evaluation against common state-of-the-art

approaches [20, 22, 17, 6], as well as expanding these

methods to use a regional and/or hierarchical aggregation

approach. Similarly, we consider the application of our

method to other datasets with different characteristics as

well as on multi-class problems a highly interesting topic.

Acknowledgment. The results shown here are in whole
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