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Abstract

Recently, query-based transformer gradually draws at-
tention in segmentation tasks due to its powerful ability.
Compared to instance segmentation in natural images, bi-
ological instance segmentation is more challenging due to
high texture similarity, crowded objects and limited anno-
tations. Therefore, it remains a pending issue to extract
meaningful queries to model biological instances. In this
paper, we analyze the problem when queries meet biological
images and propose a novel Position-guided Transformer
with query Contrast (PCTrans) for biological instance seg-
mentation. PCTrans tackles the mentioned issue in two
ways. First, for high texture similarity and crowded ob-
jects, we incorporate position information to guide query
learning and mask prediction. This involves considering
position similarity when learning queries and designing a
dynamic mask head that takes instance position into ac-
count. Second, to learn more discriminative representa-
tion of the queries under limited annotated data, we further
design two contrastive losses, namely Query Embedding
Contrastive (QEC) loss and Mask Candidate Contrastive
(MCC) loss. Experiments on two representative biological
instance segmentation datasets demonstrate the superior-
ity of PCTrans over existing methods. Code is available at
https://github.com/qic999/PCTrans.

1. Introduction
Biological instance segmentation is a prerequisite for

analyzing the behaviors and properties of target organ-

isms [8, 42, 24]. Compared to instance segmentation in nat-

ural images, this task is more challenging due to the variety

of uneven texture, ambiguous boundary, and morphologi-

cal differences. Besides, overlapping and occlusions of in-

stances are severe in different biological image modalities,

such as plant phenotype images [38], fluorescence micro-

scope (FM) images [33], Haematoxylin and Eosin (H&E)

*Corresponding author: zwxiong@ustc.edu.cn.

pixel-query similaritypixel-pixel similarity

0.12

0.920.93
0.21

0.82

0.95
0.89

(a)

(c)

(b)

(d)

Figure 1. Illustration of our motivation. (a) shows the discrimina-

tive difference of pixel embeddings. (b) shows the attention weight

of the last cross-attention layer. (c) shows the activation map of the

output layer. (d) shows the segmentation error caused by the high

similarity between one query and multiple instances feature in bi-

ological instance segmentation.

stained histology slides [44], and electron microscope (EM)

images [4, 30]. Therefore, it is highly desirable to design

accurate and reliable instance segmentation algorithms for

biology and biomedical research.

Deep learning-based methods are widely used in bi-

ological instance segmentation nowadays. They can be

grouped into two categories: proposal-based and proposal-

free methods. Limited by bounding boxes, proposal-based

methods typically suppress valid objects when adjacent in-

stances have severe overlap. Besides, these methods intro-

duce multiple hyper-parameters and design choices, which

are non-trivial to select for different biological datasets [38,

33, 44]. Proposal-free methods get rid of the limitation of

bounding boxes and are less sensitive to different object

sizes due to post-processing. However, the final segmen-

tation performance is sensitive to the selection of hyper-

parameters in post-processing algorithms [12, 2, 48, 5, 18].

Meanwhile, independent post-processing algorithms pre-

vent end-to-end training of the segmentation pipeline, lead-

ing to a sub-optimal result. In a word, both types of methods

suffer from crowded objects to varying degrees, merging

adjacent objects or suppressing valid instances.

Recently, query-based transformer networks present a

new paradigm of instance segmentation which aggregates

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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object-related information and provide a group of object

queries to output the final set of mask candidates [7, 6, 37].

This paradigm simplifies the segmentation pipeline and

shows excellent results in natural images. The mask can-

didates are obtained by computing the similarity between

pixel embeddings and query embeddings. However, there is

a large gap when applying these works to model biological

instances features by queries due to high feature similarity

between biological instances. As shown in Figure 1 (a), the

pixel embeddings in natural images are more discriminative

than those in biological images. Therefore, the distinct in-

stance feature can be better aggregated into queries through

a cross-attention mechanism (Figure 1 (b)). Furthermore,

mask candidates with high quality can be produced due to

the more precise activation (Figure 1 (c)). In biological im-

ages, queries are easier to aggregate vague instances fea-

tures with similar pixel embeddings, leading to segmenta-

tion error (Figure 1 (d)). In other words, the existing meth-

ods more rely on visual similarity in query learning, which

is not enough for biological instances.

To tackle the above issue, we propose a novel one-stage

position-guided transformer with query contrast (PCTrans)

for biological instance segmentation. PCTrans is based on

two key designs, including 1) exploring position informa-

tion to guide query learning and mask predicting, and 2)

making queries more discriminative by contrastive learning.

To obtain the position attribute of queries, we iteratively

predict the center of instances based on queries. For query

learning, we consider the position similarity between query

position and pixel position with a cross-attention mecha-

nism. In this way, query learning alleviates the over-reliance

on visual similarity. For mask predicting, we design a

position-aware dynamic mask head conditioned on queries,

which can better fuse features between queries and pixel

embeddings under the position guidance, adaptively pro-

ducing high-quality mask candidates. Benefiting from the

strong capacity of dynamic conditional convolutions, the

mask head can be very lightweight, which is computation-

ally friendly.

Another challenge in using transformers for biological

tasks is the limited availability of annotation data. Trans-

formers require a substantial amount of training data to ef-

fectively learn discriminative queries and perform well on

dense prediction tasks [13, 50, 45]. However, there is cur-

rently a scarcity of annotated training data for the biologi-

cal instance segmentation task. To make up for the disad-

vantage in data, we design two contrastive losses, namely

Query Embedding Contrastive (QEC) loss and Mask Can-

didate Contrastive (MCC) loss to learn more discriminative

queries. The construction of positive and negative query

pairs is achieved by a clustering algorithm, regarding the

queries best-matched with ground truth as clustering cen-

ters. Then we perform contrastive learning to the queries

and the corresponding predicted masks, respectively.

Overall, the contributions of this work are summarized

as follows:

• We propose the first one-stage position-guided trans-

former with query contrast (PCTrans) for biological

instance segmentation.

• To tackle high texture similarity and crowded objects,

we explicitly explore position information of instances

to guide query learning and mask predicting.

• To overcome limited annotations, we design two con-

trastive losses, QEC loss and MCC loss, to enhance

queries representation.

• Our proposed PCTrans achieves state-of-the-art per-

formance on two representative biological instance

segmentation benchmarks.

2. Related Work

2.1. Biological Instance Segmentation

Previous works on biological instance segmentation

mainly follow two directions: proposal-based and proposal-

free methods. Proposal-based methods [27, 26, 53, 54,

56] first locate objects by bounding boxes and subse-

quently refine the instance mask within the region of inter-

est. Proposal-free methods predict well-designed instance-

aware features and morphological properties, followed by

post-processing algorithms to yield final results. These

methods focus on designing elegant networks to obtain

high-quality intermediate of instances, such as affinity, gra-

dient map, and so on. With the assistance of complex

and well-designed post-processing algorithms such as wa-

terz [12], LMC [2], Mutex [48], and conditional random

field [23], these intermediates can be processed into in-

stance masks. The proposal-free methods [9, 22, 29, 49, 31]

are prevalent in nuclei segmentation, leaf and plant segmen-

tation, which both are common instance segmentation tasks

in biological images. In this paper, we are the first to utilize

queries for modeling biological instance features and inves-

tigate their potential in biological instance segmentation.

2.2. Query-based Transformer

Transformer [43] were born out of natural language pro-

cessing and have been successfully extended to the field of

computer vision [11]. Recently, DETR [3] is proposed to

combine transformer with a CNN backbone to aggregate

object-related information and provided a group of object

queries to output the final set of predictions in object de-

tection task. MaskFormer [7] introduces DETR structure

into the segmentation task and tries to solve the segmenta-

tion task in a unified framework. OSFormer [37] introduces

DETR structure into camouflaged instance segmentation. In

this work, we build upon the idea of the query-based trans-
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Figure 2. The overall architecture of PCTrans. First, the input image is fed into the backbone and a stack of L self-attention layers to

produce multi-scale pixel embeddings with strong feature representation. Then, queries iteratively aggregate distinct instance features

from multi-scale pixel embeddings through the position-guided cross-attention layer and interact with each other through the self-attention

mechanism for M times. During each iteration, the queries are used to predict the position and masks of instances. At the end of the

iteration, the queries and the corresponding predicted masks are regularized by the query enhancement module. At inference time, we

adopt a clustering-then-averaging strategy to get the final segmentation results.

former and improve feature extraction and utilization for bi-

ological instance segmentation.

2.3. Contrastive Learning

Contrastive learning has shown excellent prospects in

representation learning. As a representative, MOCO [14]

uses contrastive learning for image-level self-supervised

training. [46] and [17] introduce pixel-level and region-

aware contrastive learning for semantic segmentation, re-

spectively. However, it does not draw much attention to bio-

logical instance segmentation. Inspired by these works, we

perform contrastive learning to the instance-aware queries

and the corresponding predicted masks, respectively, which

can help the network learn more discriminative query fea-

tures and make up for the disadvantage of the small amount

of data in biological instance segmentation.

2.4. Dynamic Convolution

Dynamic filters have been explored in dynamic filter

networks [20] and CondConv [52] for classification task.

It differs from traditional convolution in that another net-

work dynamically generates the filter. SOLOv2 [47] and

CondInst [41] extend this idea to solve the challenges of in-

stance segmentation in neural images which adds an extra

kernel branch with the same architecture as the classifica-

tion head. In this work, to exploit the information from

the queries, we introduce dynamic filters conditioned by

queries to be aware of position information and produce

high-quality mask candidates adaptively. In this way, we

can get better prediction masks, further improving the seg-

mentation performance.

3. Proposed Method
In this section, we first formulate the biological instance

segmentation task in a query-based framework and present

the overall architecture of the proposed PCTrans. Then we

describe the details of the position-guided cross-attention

mechanism, position-aware dynamic mask head, and query

enhancement module of PCTrans. Finally, the training and

inference procedure are discussed.

3.1. Problem Formulation

We denote an image-label pair with {x,mgt}, where x
is the input image, mgtis the corresponding set of ground

truth instance masks. Specifically, mgt can be formulated as{
mgt

i |mgt
i ∈ {0, 1}H×W

}K

i=1
, where H and W represent

the height and width of the input image x, and K is the num-

ber of instances in the input image x. For every input im-

age x, there will be N queries to represent the K instances.

When the image x is fed into the network, we can obtain

the mask candidates mq =
{
mq

j |mq
j ∈ {0, 1}H×W

}N

j=1
.

To train this framework, matching between the set of pre-

dictions mq and the set of ground truth segments mgt is

required. Following the common practice in query-based

frameworks, we adopt a bipartite matching method [40].
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Since there are only foreground and background in the bi-

ological instance segmentation task, we directly use mask

candidates to compute the assignment costs for the match-

ing problem, i.e., BCE(mgt
i ,mq

j)+DICE(mgt
i ,mq

j), where

BCE(·) is the binary cross-entropy loss, and DICE(·) is the

dice loss [35]. So the bipartite matching-based assignment

σ between the set of predictions mq and mgt is conducted

for computing mask loss:

Lm =
K∑
i=1

(BCE(mq
σ(i),m

gt
i ) + DICE(mq

σ(i),m
gt
i ). (1)

As shown in Figure 2, we keep the process of extracting

multi-scale pixel embeddings X = {xk}hwk=1 through back-

bone and self-attention following previous works [6, 37],

where h and w represent the height and width of the fea-

ture map. The difference is that the position-guided cross-

attention mechanism and the position-aware dynamic mask

head are introduced to explicitly explore position informa-

tion of instances to guide query learning and mask predict-

ing. Besides, the query enhancement module contains two

contrastive losses to make queries more discriminative.

3.2. Position Guidance

To construct position guidance, we first need to obtain

the position information of instances. To achieve this tar-

get, we intuitively predict the center of instances based on

the queries. Inspired by [3], we predict the offset from the

reference point to the target center point. The coordinate is

predicted from each query as follows,

cj = sigmoid(MLP(fj) + sj), (2)

where fj is the updated query. cj is a two-dimensional vec-

tor [cjx, cjy]
� and presents the predicted coordinate of the

center point. Sigmoid function aims to normalize the pre-

diction cj to the range [0, 1]. An MLP is used to predict the

unnormalized center point coordinate. sj is the unnormal-

ized 2D coordinate of the reference point. In our method,

sj is the predicted center point coordinate in the last it-

eration. We define the set of ground truth coordinates as

cgt =
{

cgti |cgti ∈ {0, 1}}K

i=1
. So we can compute the point

loss Lp as follows:

Lp =
K∑
i=1

||cqσ(i), cgti ||1. (3)

3.2.1 Position-Guided Cross-Attention

To consider position similarity between query position and

pixel position in the cross-attention mechanism, we need to

compute a position embedding that can represent the cur-

rent query location attribute. Motivated by [34], we hypoth-

esize this position embedding can be produced by queries

and reference point. The insights behind it are that using

the sinusoidal positional encoding function can map the ref-

erence point to the same embedding space with the posi-

tional embedding of pixel embedding. However, only rely-

ing on the default embedding of the reference point is not

enough to represent the position attribute of the query. So

we need to transform the default embedding of the refer-

ence point conditioned on the query, and the transformed

position embedding can better represent the current query

location attribute. The transformed position embedding fpj
is computed as follows,

fpj =Tj ∗ sinusoidal(sigmoid(sj))

=MLP(fj) ∗ sinusoidal(sigmoid(sj)).
(4)

In this way, we form the query f̃j in position-guided cross-

attention mechanism by concatenating the default query fj
and the transformed position embedding fpj .

3.2.2 Position-Aware Dynamic Mask Head

In addition to adding position guidance to query learning,

we also consider introducing position information to the

process of mask predicting. Inspired by CondInst [41], the

dynamic filters controlled by distinct instance features are

position-aware, benefiting from their strong nonlinear prop-

erty. Hence, we introduce dynamic filters to map the pixel

embeddings to the mask candidates, which are conditioned

on the queries. We adopt compact dynamic filters as the

mask head on the given feature map Fmask, which only con-

tain a three-layer 1 × 1 convolution. This compact mask

head can provide better nonlinear properties than simple

computing similarity between query and pixel embedding

to predict masks, resulting in better prediction. The param-

eters of the mask head are adaptively generated by a con-

troller head which is a simple MLP conditioned by queries.

In order to reduce the number of the generated parameters,

we get Fmask by reducing the channel number of pixel em-

bedding to Cmask. To make full use of the position infor-

mation, Fmask is combined with a relative coordinate map

Mrc
j of the predicted coordinate cj . Then, the combination

is sent to the mask head to predict the instance mask:

mq
j =MaskHead(Concat(Fmask,Mrc

j ), wj)

=MaskHead(Concat(Fmask,Mrc
j ),MLP(fj)),

(5)

where wj is the parameters of the mask head, MLP is the

controller head to predict wi, and Concat (·, ·) is the con-

catenate operator.

3.3. Query Enhancement Module

More discriminative feature representation can facili-

tate distinguishing instances especially those with overlap-

ping, thereby improving the segmentation performance. To

3906



this end, we introduce contrastive learning between queries

to make the matched queries belonging to the same ob-

ject instance closer in embedding space and the unmatched

queries farther away. Similarly, we also perform contrastive

learning between the prediction masks. Specifically, we

propose a Query Embedding Contrastive (QEC) loss for

queries and a Mask Candidate Contrastive (MCC) loss for

prediction masks to achieve contrastive property.

We observe that if the queries predict the same object,

the cosine similarity between the corresponding query is

closer to 1. Besides, each instance can be predicted evenly

by queries and we can easily use the cosine similarity of

the query to cluster the query. We define the query matched

with ground truth mask as contrastive embedding v accord-

ing to the results of bipartite matching. By comparing the

cosine similarity between queries, we cluster the queries

into groups regarding the contrastive embedding v as the

clustering center. Queries belonging to the same group as

contrastive embedding v are considered positive samples of

equivalent contrastive embedding. The QEC loss for a pos-

itive pair of examples is defined as follows:

LQEC =−
∑
k+

log
ed(v,k

+)/τq

ed(v,k
+)/τq +

∑
k− ed(v,k

−)/τq

=− log

[
1 +

∑
k+

∑
k−

ed(v,k
−)/τq−d(v,k+)/τq

]
,

(6)

where τq is a temperature hyper-parameter to control the

scale of terms, k+ and k− are positive and negative queries,

respectively, and d(v,k+) denotes the cosine similarity dis-

tance.
Similarly, the MCC loss for multiple positive examples

is defined as follows:

LMCC = − log

⎡
⎢⎣1 +

∑

m+
i

∑

m−i

e
d(m

q
σ(i)

,m−i )/τm−d(m
q
σ(i)

,m+
i )/τm

⎤
⎥⎦ ,

(7)

where τm is a temperature hyper-parameter to control the

scale of terms, m+
i and m−

i are positive and negative query

masks, respectively, and d(mq
σ(i),m

−
i ) =

2
∣
∣
∣m

q
σ(i)

∩m−i
∣
∣
∣

∣
∣
∣m

q
σ(i)

∣
∣
∣∪|m−i |

measures the similarity between mask candidates.

3.4. Training and Inference
To make the network produce better pixel embed-

ding, we add two auxiliary losses, including discriminative
loss [9] Ld and semantic loss Ls on the pixel embedding.
Finally, the whole model is optimized with a multi-task loss
function:

L = λ1Lm + λ2Lp + λ3Ld + λ4Ls + λ5LQEC + λ6LMCC, (8)

where λ1−6 are weighting coefficients to balance these six

terms.

In the inference phase, there is no ground truth mask and

we cannot know which query mask is the best candidate

for the objects. To maximize the performance advantage

of our network, we propose a simple but effective strategy

to exploit the total query mask. The process of multiple

queries predicting the same object is like the procedure of

test augmentation in semantic segmentation. Therefore, we

can cluster queries in a simple threshold-based clustering

way to get all queries that predict the same instance. Then

we only need to average the masks in the same category to

get the final instance masks.

4. Experiments
4.1. Dataset and Metric

Fluorescence Microscopy Images. BBBC039V1 [33] is

part of a high-throughput chemical screen on U2OS cells,

with examples of 200 bioactive compounds. The effect of

the treatments was originally imaged using the Cell Paint-

ing assay (fluorescence microscopy). This dataset contains

200 images in size 520×696 which present a variety of nu-

clear phenotypes, representative of high-throughput chem-

ical perturbations. Following [19], we use 100 images for

training, 50 images for validation, and the rest of the 50 im-

ages for testing. Following the existing methods, we adopt

four common metrics, including Aggregated Jaccard Index

(AJI), pixel-level Dice score (Dice), object-level F1 score

(F1) and Panoptic Quality (PQ).

Plant Phenotype Images. The CVPPP A1 dataset [38]

is one of the most common instance segmentation bench-

marks, which consists of 128 training images and 33 testing

images with a size of 530× 500 pixels. Following [19], we

randomly select 20 images from the training set as the vali-

dation set. This dataset is challenging due to the high vari-

ety of leaf shapes and severe occlusion among leaves. The

quality of the segmentation result is measured by Symmet-

ric Best Dice (SBD) and absolute Difference in Counting

(DiC) metrics.

4.2. Implementation Details

For multi-scale pixel embedding extraction, we use

multi-scale deformable attention Transformer (MSDefor-

mAttn) [57] as the self-attention layer. Specifically, we use

6 MSDeformAttn layers applied to feature maps with res-

olution 1/8, 1/16 and 1/32 from the Backbone. Besides,

we use a simple downsampling layer with a lateral con-

nection on the 1/4 feature map to generate the feature map

of resolution 1/8 as the pixel embedding. To get the fea-

ture map Fmask, we adopt a 1 × 1 convolution to reduce

the channel of pixel embedding to 16. In addition, we set

the channels of the dynamic filters all as 8 by default. We

use 9 position-guided cross-attention layers and standard

self-attention layers for querying learning. Besides, we set
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Method AJI ↑ Dice ↑ F1 ↑ PQ ↑
Mask RCNN[15] 0.7983 0.9277 0.9180 0.7773

Cell RCNN[55] 0.8070 0.9290 0.9276 0.7959

UPSNetN[51] 0.8128 0.9274 0.9191 0.7857

JSISNet[10] 0.8134 0.9316 0.9282 0.7913

PanFPN[21] 0.8193 0.9320 0.9275 0.7960

OANet[28] 0.8198 0.9372 0.9330 0.8085

AUNet[25] 0.8252 0.9377 0.9315 0.8090

Cell RCNNv2[27] 0.8260 0.9336 0.9328 0.8010

PFFNet[26] 0.8477 0.9478 0.9451 0.8331

PEA [19] 0.8674 0.9473 - 0.8420

BISSG [32] 0.8680 0.9482 0.9670 0.8629

OSFormer [37] 0.7414 0.9206 0.8755 0.7516

Mask2Former [6] 0.7671 0.9601 0.8879 0.8011

Ours 0.9022 0.9625 0.9668 0.8922
Table 1. Quantitative comparison with state-of-the-art methods on

the test set of BBBC039V1.

300 queries and 100 queries on BBBC039V1 and CVPPP

datasets, respectively. For all experiments, we set the batch

size to 8. We adopt the AdamW [?] optimizer and the step

learning rate schedule. We use an initial learning rate of

0.0001 with linear warming up in the first 1000 iterations

and a weight decay of 0.05 for all layers. We adopt a crop

size of 512× 512 and train 30k iterations on BBBC039V1.

We use a crop size of 448× 448 and train 60k iterations on

CVPPP. Following [19], we adopt the same data augmenta-

tion for BBBC039V1 and CVPPP. Following [6], we calcu-

late the mask loss with sampled points in both the matching

and the final loss calculation to save GPU memory and im-

prove training efficiency. We set λ1 = λ2 = λ4 = 5 and

λ3 = λ5 = λ6 = 2 by default. When compared with state-

of-the-art methods, we set τq = 2, τm = 0.5 and adopt

ResNet-101 [16] as the backbone. In the ablation study, we

set τq = τm = 1 and adopt ResNet-50 [16] as the backbone.

4.3. Comparison with State-of-the-art Methods

4.3.1 Comparison with CNN-based Methoeds

Results on BBBC039V1. We demonstrate the effectiveness

of our method on the BBBC039V1 dataset. As shown in Ta-

ble 1, our proposed PCTrans achieves the best performance

on all metrics. The performance of PCTrans is obviously

improved compared with the latest proposal-based method

PFFNet [26] and the proposal-free methods PEA [19] and

BISSG [32]. Specifically, PCTrans improves the key PQ

metric by 2.48%. We further carry out a qualitative visual-

ization analysis. As shown in the first example in Figure 3,

PCTrans achieves better results for nuclear instance seg-

mentation compared to these three latest methods. Specif-

ically, compared to PEA and BISSG, our PCTrans effec-

tively distinguishes nuclear pixels from the background and

segments different instances especially those with overlap-

ping. Compared to the proposal-based method PFFNet, our

Method SBD ↑ |DiC| ↓
Nottingham[39] 68.3 3.8

IPK[36] 74.4 2.6

AC[1] 79.1 1.1

Discriminative∗[9] 79.6 1.4

PEA∗ [19] 83.8 2.4

SPOCO∗ [49] 84.4 1.7

BISSG∗ [32] 87.3 1.4

OGIS∗ [54] 87.5 1.1

OSFormer [37] 79.0 2.12

Mask2Former [6] 80.1 1.24

Ours 88.7 0.7
Table 2. Quantitative comparison with existing methods on the test

set of CVPPP A1. ∗ denotes the updated results under the cor-

rected calculation script of SBD on the CVPPP challenge web-

site1.

PCTrans can segment more precise instance contours.

Results on CVPPP. We compare our method with existing

methods on the test set of CVPPP A1. Since the ground

truth labels of test data are not available, we report the re-

sults returned by the official challenge website. Due to the

recent correction in the calculation script of SBD on the

website, we reproduce the results of the latest methods with

open source under the current calculation script and present

them with * in Table 2. Note that the corrected calculation

script would return a lower SBD value. As can be seen,

compared with the two latest methods, PCTrans achieves

the best SBD and |DiC| results. Specifically, there is an im-

provement of 1.2% SBD, which is the key metric of this

dataset. Furthermore, we visualize the segmentation results

on the validation set for comparison in the second exam-

ple in Figure 3, which qualitatively demonstrates the supe-

riority of our method. From the visualization, we can see

that our PCTrans can precisely locate the objects and effec-

tively segment the instance masks compared to other exist-

ing methods.

4.3.2 Comparison with Query-based Methoeds

In order to further illustrate the distinction between our PC-

Trans and existing query-based methods, we selected two

representative works in natural images for comparison, in-

cluding Mask2Former and OSFormer. As can be seen from

Table 1 and 2, naively using queries to model biological

instance feature results in severe performance drop due to

high visual similarity. We also visualize the final segmen-

tation results and the instance mask predicted by a single

query in Figure 3 and 4, respectively. As shown in Fig-

ure 3, Mask2Former and OSFormer both suffer from more

merge errors. The reason behind it can be explained from

1https://codalab.lisn.upsaclay.fr/competitions/
8970
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Input image Ground Truth BISSGPEA OursOGIS Mask2FormerOSFormer

Input image Ground Truth BISSGPEA OursPFFNet Mask2FormerOSFormer

Figure 3. Visualization of segmentation results on the test set of BBBC039V1 (top) and the validation set of CVPPP (bottom). Different

colors indicate different instances in the images. The yellow dashed boxes are drawn for clear comparison.

Input image Ground Truth OursMask2FormerOSFormer

Figure 4. Quantitative comparison of mask candidates by queries

in Msak2Former, OSFormer and Our PCTrans. The instance in

yellow boxes are the target instances.

Figure 4. The queries in Mask2Former and OSFormer are

easier to predict worse masks and multiple instances once a

time. Our PCTrans alleviates this problem to a large extent,

which results in better segmentation performance.

4.4. Ablation Study and Analysis

To evaluate the effectiveness of key components adopted

in our proposed PCTrans, we perform a series of com-

parisons with PCTrans variants on BBBC039V1. Table 4

shows the quantitative results with different components.

Effectiveness of position-guided cross-attention mecha-
nism. The goal is to clarify how important the position-

guided cross-attention mechanism is to our proposed PC-

Trans. We present the quantitative results of adopting the

standard cross-attention (Type 1), the position-guided cross-

attention with untransformed position embedding (Type 2)

and the position-guided cross-attention with transformed

position embedding (Type 3) in Table 3. As shown in Ta-

ble 3, the position information cannot be utilized in the

calculation of cross-attention without transforming position

embedding conditioned on queries. Only by using queries

to align the position embedding into a distinct embedding

space, the position similarity can be considered in the cross-

attention mechanism.

Effectiveness of position-aware dynamic mask head.
The position information is also utilized in the dynamic

mask head. The quantitative results with dynamic filters

are shown in the first row and second row of Table 4. The

results show that simply adopting dynamic filters without

mechanism AJI ↑ Dice ↑ F1 ↑ PQ ↑
Type 1 0.8588 0.9561 0.9474 0.8607

Type 2 0.8607 0.9550 0.9506 0.8640

Type 3 0.8919 0.9647 0.9622 0.8833
Table 3. Ablation results of different cross-attention mechanism.

(a) (c)(b)

Figure 5. Visualization for the effect of the contrastive losses. (a)

queries similarity w/o the contrastive losses, (b) queries similarity

w/ the contrastive losses, (c) predicted masks by similar queries

w/ the contrastive losses. The differences in predicted masks by

similar queries are only litter in the red boxes.

position information can provide stronger nonlinear prop-

erties to convert pixel embedding to instance masks. Be-

sides, when concatenating the relative coordinate map into

pixel embedding, the dynamic filters can be aware of the

position information and better locate the distinct instance

region. The ablation studies about position information in-

dicate that position information is important when adapting

queries to model instances features.

Effectiveness of two contrastive losses. Our proposed PC-

Trans aims to enhance the query representation by design-

ing two contrastive losses. To verify the effectiveness, we

compare the segmentation performance of our method with

and without the QEC loss and the MCC loss. The results

in Table 4 show that the contrastive losses have an impor-

tant contribution to improving segmentation performance,

which helps to enhance the segmentation masks and sepa-

rate overlapping objects. We also visualize the query simi-

larity and the predicted masks by similar queries for under-

standing the effect of these two contrastive losses in Fig-

ure 5. The results clearly show that the contrastive losses

successfully suppress the feature similarity for different in-
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dynamic filters Mrc
j Ls Ld LQEC LMCC AJI ↑ Dice ↑ F1 ↑ PQ ↑

0.7671 0.9601 0.8879 0.8011

� 0.7684 0.9598 0.9091 0.8141

� � 0.8591 0.9461 0.9424 0.8597

� � � 0.8646 0.9599 0.9418 0.8611

� � � � 0.8714 0.9482 0.9446 0.8665

� � � � � 0.8921 0.9605 0.9570 0.8790

� � � � � 0.8941 0.9634 0.9582 0.8821

� � � � � � 0.8981 0.9617 0.9615 0.8845
Table 4. Ablation study of key components adopted in our proposed PCTrans. � indicates adding the corresponding component.

τq τm AJI ↑ Dice ↑ F1 ↑ PQ ↑
0.5 0.5 0.8983 0.9625 0.9619 0.8856

0.5 1.0 0.8934 0.9619 0.9584 0.8816

0.5 2.0 0.8934 0.9620 0.9590 0.8813

1.0 0.5 0.8955 0.9632 0.9612 0.8851

1.0 1.0 0.8981 0.9617 0.9615 0.8845

1.0 2.0 0.8982 0.9632 0.9605 0.8844

2.0 0.5 0.8962 0.9639 0.9621 0.8858
2.0 1.0 0.8921 0.9626 0.9595 0.8816

2.0 2.0 0.8975 0.9624 0.9580 0.8805

Table 5. Ablation results of different temperature hyper-

parameters on the test set of BBBC039V1.

Num. layers L AJI ↑ Dice ↑ F1 ↑ PQ ↑
0 0.8752 0.9582 0.9422 0.8664

1 0.8696 0.9614 0.9512 0.8713

3 0.8848 0.9616 0.9530 0.8761

4 0.8883 0.9589 0.9574 0.8791

5 0.8955 0.9624 0.9575 0.8820

6 0.8981 0.9617 0.9615 0.8845
7 0.8923 0.9618 0.9632 0.8843

Table 6. Ablation results on the number of self-attention layer for

extracting multi-scale pixel embeddings.

stance queries and make queries more discriminative.

Temperature hyper-parameter. Table 5 shows the abla-

tion results about different temperature hyper-parameters τq
and τm in LQEC and LMCC. Specifically, we use 0.5, 1.0 and

2.0 to produce different combinations of temperature hy-

perparameters τq and τm. As can be seen, τq = 2.0 and

τm = 0.5 achieve the best performance on the PQ metric,

which is the most important metric.

Number of self-attention layer L. The quality of multi-

scale pixel embeddings is a key factor influencing the per-

formance of the total network. We attempt a series of dif-

ferent numbers of self-attention layers for extracting pixel

embedding to optimize the performance of PCTrans. As

shown in Table 6, setting L = 6 is enough to get a good

performance.

Dimension of Fmask. We further investigate the impact

of the Fmask. We change Cmask, which is the number of

channels of Fmask. As shown in Table 7, higher dimen-

Dimension AJI ↑ Dice ↑ F1 ↑ PQ ↑
4 0.8885 0.9588 0.9589 0.8764

8 0.8949 0.9607 0.9598 0.8780

16 0.8981 0.9617 0.9615 0.8845
Table 7. Ablation results for dimension of Fmask.

Num. queries AJI ↑ Dice ↑ F1 ↑ PQ ↑
200 0.8573 0.9446 0.9431 0.8671

300 0.8981 0.9617 0.9615 0.8845
600 0.8919 0.9647 0.9622 0.8833

Table 8. Ablation results on the number of queries.

sional embeddings are beneficial for better representation of

pixels. Cmask = 16 is optimal and thus we use Cmask = 16
in all other experiments by default.

Number of queries. We study the number of queries on

BBBC039V1 in Table 8. We can see that when N = 300,

our method achieves the best result. However, there is an

obvious performance degradation when N = 200. This

suggests that a few queries are insufficient to provide a good

result for the datasets with many instances in most biolog-

ical images. The performance does not fluctuate much, al-

though N becomes very large, suggesting that the mask

candidates predicted by queries are robust.

5. Conclusion
In this paper, we propose the first one-stage query-based

transformer PCTrans for biological instance segmentation.

To address challenges such as high texture similarity and

crowded objects, we incorporate position information into

the learning process of queries and mask prediction. To

overcome limited annotations, we propose two contrastive

losses, QEC loss and MCC loss, to enhance the discrim-

inative power of the queries representations. Experimen-

tal results demonstrate that our proposed PCTrans achieves

state-of-the-art performance on two commonly used biolog-

ical instance segmentation datasets.
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