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Abstract

Designing metrics for evaluating instance segmentation
revolves around comprehensively considering object detec-
tion and segmentation accuracy. However, other impor-
tant properties, such as sensitivity, continuity, and equal-
ity, are overlooked in the current study. In this paper, we
reveal that most existing metrics have a limited resolution
of segmentation quality. They are only conditionally sensi-
tive to the change of masks or false predictions. For cer-
tain metrics, the score can change drastically in a narrow
range which could provide a misleading indication of the
quality gap between results. Therefore, we propose a new
metric called sortedAP, which strictly decreases with both
object- and pixel-level imperfections and has an uninter-
rupted penalization scale over the entire domain. We pro-
vide the evaluation toolkit and experiment code at https:
//www.github.com/looooongChen/sortedAP.

1. Introduction

Recently, considerable work has been conducted in in-

stance segmentation due to its wide scope of applica-

tion [9, 19, 4, 3], such as autonomous driving [5], medical

diagnosis [13] and agricultural phenotyping [18, 2]. In the

field of bioimage computing, segmenting instances of ani-

mals [16], cells [6], and subcellular structures [1, 8] is also

common and infrastructural processing for further analysis

and study. Instance segmentation not only localizes the ob-

ject of interest but also delineates the exact boundary, which

can be seen as performing object detection and semantic

segmentation concurrently.

Correspondingly, a qualified evaluation metric should

consider three fundamental types of imperfections: missed

ground truth objects (false negative), falsely predicted ob-

jects (false positive), and segmentation inaccuracy. Existing

metrics all incorporate the three error types above, but are

not discussed with respect to properties, including sensitiv-

ity, continuity, and equality.

Sensitivity. An ideal metric should be sensitive to all

occurrences of imperfections of all types. Any additional

errors are supposed to lead monotonically to a worse score,

not ignored or obscured by the occurrence of other errors.

A metric that monotonically decreases with any errors will

enable a more accurate comparison.

Continuity. The penalization scale of a metric should

be relatively consistent locally across the score domain.

Intuitively, gradually and evenly changing segmentations

should correspond to a smoothly changing metric score as

well. Abrupt changes are not desired.

Equality. Without any assumed importance of different

objects, all objects should have an equal influence on the

metric score. A common case of inequality is that the score

is biased towards larger objects. Although larger objects

may be prioritized in some applications, as a general metric,

the metric should treat all objects equally. Analysis with

respect to object size can be easily performed by evaluating

different size groups using a metric of equal property.

Although all metrics discussed in this paper implement

a penalization of false positive, false negative, and segmen-

tation inaccuracy, the majority of metrics, even very widely

used ones, such as the mean Average Precision (mAP) [1],

are only conditionally sensitive to errors. This violates the

sensitivity property, as some differences in segmentation re-

sults are not reflected in the score. For match-based ap-

proaches, such as Average Precision (AP) [1] and Panop-

tic Quality (PQ) [11], the score will change abruptly at the

match threshold. There is actually a paradox in choosing

thresholds, which is discussed in Section 3.

To address the gap, we propose a new metric called

the sorted Average Precision (sortedAP). Unlike mAP [1],

which queries the AP score at a sequence of fixed intersec-

tion over union (IoU) thresholds, sortedAP detects every ex-

act IoU value at which the AP score drops. This is achieved

through our proposed Unique Matching approach and sort-
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ing all possible matches according to the IoU values (Sec-

tion 4). The Unique Matching method explicitly preserves

the one-to-one relationship between two sets of instances.

This also allows the use of IoU thresholds smaller than 0.5,

or under object overlap, in all match-based metrics.

2. Related work: A review
This section provides an overview of proposed evalu-

ation metrics in the literature. We use the notion G =
{g1, g2, . . . , gM} and P = {p1, p2, . . . , pN} to represent

the set of ground truth and predicted objects in the follow-

ing context. The capitalized symbols G and P can represent

a set, or the number of elements in the set, for notation sim-

plicity.

2.1. Overlap-based metrics

The Dice coefficient (Dice) and the Intersection over

Union (IoU) are the most commonly used metrics to mea-

sure the similarity between two binary masks. The IoU,

also known as Jaccard Index (JI), is defined as the ratio of

the intersection area to the union area between two masks:

IoU(p, g) =
|p ∩ g|
|p ∪ g| . (1)

Instead of the union, Dice use accumulated area:

Dice(p, g) =
2 · |p ∩ g|
|p|+ |g| . (2)

Although they have slightly different definitions, both

metrics utilize the same fact that the intersection area is

maximized when two masks are identical. Furthermore, the

two metrics are directly related in values:

Dice(p, g) =
2 · IoU(p, g)

1 + IoU(p, g)
. (3)

Aggregated Jaccard Index (AJI). The AJI [13] extends

the Jaccard Index to instance segmentation by accumulating

the object-level intersection and union area, which is com-

puted between each ground truth object and the prediction

yielding the maximum IoU. The area of predicted objects

without any matched ground truth objects is also aggregated

to the union area as the penalization to false positives.

Symmetric Best Dice (SBD). SBD [18] is based on an

asymmetric score Best Dice (BD). For each object in one

set, BD finds the maximal Dice with any object in the other

set (the reference set) for averaging.

BD(P,G) = 1

N

N∑

i=1

max
j=1:M

Dice(pi, gj), (4)

The BD does not fully penalize all errors, since un-

matched objects in the reference set are excluded and have

no impact on the score. Therefore, the SBD computes BD

using both sets under comparison as the reference and takes

the worse score as the final score:

SBD(P,G) = min{BD(P,G), BD(G,P)}. (5)

2.2. Match-based metrics

Another category of metrics is based on object-level

detection errors at one or multiple segmentation quality

thresholds. A matching criterion t, typically an IoU value,

is defined as a prerequisite. Each ground truth object

searches for a successful match in the predicted objects,

or vice versa. Based on the match results, all objects can

be grouped into one of the three categories: true positives

(TPt), false positives (FPt), and false negatives (FNt).

Fundamentally, the match between predicted objects and

ground truth objects should satisfy a one-to-one relation-

ship. This ensures that the number of true positives is equal

to the number of ground truth objects that have a success-

ful match. We will discuss how to explicitly maintain this

relationship in Section 4.1.

Average precision (AP). The term AP can refer to dif-

ferent evaluation metrics in the literature. For ease of dis-

cussion, we refer to them as the P-R AP [7] and the point

AP [1]. Despite being based on different perspectives, both

metrics are defined in terms of precision and recall:

Pret =
TPt

TPt + FPt
, Rect =

TPt

TPt + FNt
. (6)

The P-R AP was first proposed for the evaluation of ob-

ject detection tasks [7, 14]. As a summary of the Precision-

Recall curve (P-R curve), it evaluates a model from a

more comprehensive view by considering the precision per-

formance over the entire recall domain. Although very

widely used, the P-R AP suffers from certain deficiencies,

as pointed out by recent works. Firstly, the definition re-

quires a confidence score for each prediction, while not all

approaches naturally score the outputs. For example, most

bottom-up approaches do not directly deliver object-level

confidence scores as most detection-based pipelines do. In

terms of discrimination capability, P-R AP does not really

distinguish between different shapes of P-R curves [17].

The neglect of low-confidence duplicates (hedged predic-

tion) is another important deficiency of P-R AP [10].

In comparison, the point AP is oriented towards the end

result and corresponds to a point on the P-R curve that

achieves a certain precision-recall trade-off. In this case, all

predictions are treated equally regardless of scoring. The

point AP is formulated as follows:

APt =
TPt

TPt + FPt + FNt
. (7)
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The point AP relates to the P-R curve according to the

following equation:

APt =
1

Pret +Rect + 1
. (8)

While the P-R AP favors precision improvements at any

recall level, the point AP only focuses on the single point

of best precision-recall trade-off. From the user’s perspec-

tive, higher precision in the extreme recall range is of lim-

ited practical significance. Therefore, point AP obligates

the processing pipeline to screen predictions, including de-

termining the optimal cutoff confidence. In the following

context, we refer to the point AP when using the term AP.

Mean Average Precision (mAP). The AP score is based

on the matching results under a certain IoU threshold t. Seg-

mentation imperfections better than the matching criterion

will not be further penalized. Similarly, objects worse than

the threshold are viewed as equally bad.

To compensate for the neglect of segmentation imper-

fections, the mean Average Precision (mAP) [1] averages a

series of AP scores over progressively higher IoU thresh-

olds:

mAP =
1

N

∑

t∈T

TPt

TPt + FPt + FNt
, (9)

where T = {t1, t2, . . . , tN}. A typical choice for the

threshold range is from 0.5 to 0.95, with a step size of 0.05.

It is worth mentioning that when referring to mAP, it

generally means the averaging of multiple AP scores, rather

than scores under different matching thresholds specifically.

For example, the PASCAL dataset [7] computes P-R AP

scores of different semantic classes for averaging. The

COCO challenge [14] considers both the semantic cate-

gories and varying matching thresholds. In this work, we

only discuss averaging across matching thresholds, as it is

directly relevant to metric design.

Panoptic Quality (PQ). The PQ is defined as the multi-

plication of the Recognition Quality (RQ)

RQ =
2 · TPt=0.5

2 · TPt=0.5 + FPt=0.5 + FNt=0.5
(10)

and the Segmentation Quality (SQ)

SQ =

∑
(p,g)∈TPT=0.5

IoU(p, g)

|TPt=0.5| , (11)

where (p, g) indicates a matched prediction and ground

truth pair. The RQ measures the detection accuracy as the

AP and they are related as

RQ =
2 ·APt=0.5

1 +APt=0.5
. (12)

The SQ term is basically the mean IoU of all true positive

pairs, explicitly modeling the segmentation quality of ob-

jects above the match threshold.

Metrics AJI SBD PQ mAP sortedAP

Case-1 .5125 .4925 .4229 .3778 .4261

Case-2 .4587 .4325 .3771 .3778 .3839

Case-3 .6252 .4925 .4933 .4722 .5283

Case-4 .5159 .4975 .4975 .4000 .4288

Case-5 .5125 .3940 .3700 .3148 .3572

Table 1. Scores of different metrics for the examples shown in Fig-

ure 1. In each column, the pair of cases marked in bold demon-

strate the deficiency of a metric.

3. An analysis of deficiencies
3.1. Sensitivity to errors

While existing metrics account for all three types of er-

rors, few of them are sensitive to all occurrences of errors.

Exempted error. SBD takes the worse BD score be-

tween using the ground truth and the prediction as the refer-

ence. This only considers false positives or false negatives,

except the segmentation inaccuracy, respectively. As illus-

trated in Figure 1a and Figure 1c, predictions with and with-

out an additional false positive have the same SBD score.

Although the false prediction decreases BD(P,G), the im-

pact on SBD is exempted by the lower BD(G,P).
Resolution of segmentation difference. As stated pre-

viously, the mAP score reflects the segmentation quality by

computing AP scores at varying IoU thresholds, with a cer-

tain step size. Despite having a good practical utility with

an appropriate step size, mAP is only definitely sensitive to

IoU changes greater than the step size. A smaller difference

in IoU may or may not result in score changes, depending

on whether the change crosses a predefined IoU threshold

or not. From Figure 1a to Figure 1b, all IoUs decrease by

0.08. However, the mAP score remains unchanged in the

case of step size 0.1 (Figure 2).

3.2. Match thresholds and score continuity

Match-based metrics use hard thresholds to determine

true and false positives. As a result, objects can abruptly

transition from true positives to false positives, even if they

are only slightly different in IoU. PQ and mAP introduce

a continuous or quasi-continuous measure of the segmenta-

tion, but only in the domain above the minimum IoU thresh-

old. A discontinuous change always occurs at the lower IoU

threshold. An example is shown in Figure 1, where increas-

ing the IoU of only one prediction from 0.49 to 0.51 leads

to a PQ change of 17.64%, from 0.4229 to 0.4975 (Table 1).

Threshold dilemma. A discontinuous score is not com-

pletely unacceptable. The IoU threshold can be set low

enough so that two useful results (away from the low IoU

range) will not be assigned drastically different scores.

However, a single AP or PQ score reported with a low

match threshold becomes less informative. PQ makes the
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Figure 1. Examples to illustrate the deficiencies of evaluation metrics. (a) Case-1 is the base example. (b) All IoUs get worse in Case-2, but

the mAP score remains unchanged. (c) Case-3 contains one less false positive, but SBD score is the same as Case-1. (d) In Case-4, only

one object segmentation improves by 0.02 in IoU, but the PQ score increases by 17.64%. (e) Two false positives are present in Case-5,

while only one exists in Case-1. AJI score penalizes them equally due to the smaller size of objects in Case-5.

compromise at the IoU of 0.5. The mAP only alleviates the

amplitude of abrupt changes by dividing them into multiple

levels (Figure 3c and Figure 3f).

3.3. Equality of object-level errors

Without specific assumptions, objects should be treated

equally. A missed small object is supposed to place the

same impact on the score as a larger object. Object seg-

mentation accuracy should also be measured relative to their

size, rather than the absolute area. Match-based approaches

satisfy this property by constructing the metric using the ob-

ject counts and object-level IoU. SBD takes the average of

object Dice, therefore also area-independent. In contrast,

AJI does not have a notion of objects. For instance, the sce-

nario of having two false positives in Figure 1e yields the

same AJI score as the scenario of having one larger false

positive in Figure 1a. And accumulating absolute area will

also bias the score towards the quality of larger objects.

4. Sorted Average Precision (sortedAP)
4.1. Unique Matching

For match-based metrics, each ground truth object can

match at most one prediction, and vice versa. This rule en-

sures that the number of true positives is consistent with

the number of ground truth objects that have a successful

match. In the greedy match used by mAP and PQ, the one-

to-one relationship is implicitly maintained by using match-

ing IoUs larger than 0.5. This is because, under the non-

overlapping assumption, no two objects can match with the

same object while both having IoUs larger than 0.5 [11].

We propose using the Hungarian algorithm [12] to de-

termine true positive matches. This involves the follow-

ing steps: constructing the cost matrix, padding the cost

(a) (b)

Figure 2. Computation of meanAP and sortedAP on the Case-1

and Case-2 in Figure 1. The mAP estimates the AP curve by

querying AP values at fixed IoUs, while sortedAP identifies the

exact IoU value where the AP curve drops.

matrix to square, solving the maximal assignment problem

using the Hungarian algorithm, and removing matches of

zero cost. The implementation details are depicted in Algo-

rithm 1.

The Hungarian matching algorithm not only maintains

the one-to-one match relationship but also maximizes the

accumulated IoUs of true positive matches. The Unique

Matching as a plug-in extension can be applied to both AP

and PQ, making them applicable with low match thresholds

and object overlap.

4.2. AP scores over the entire IoU domain

To avoid the drastic score change (Section 3.2), we pro-

pose to summarize the AP scores over the entire IoU thresh-

old domain as a metric, instead of a single AP score or

scores covering only part of the domain. By using our pro-

posed Unique Matching approach, the mAP can be straight-
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Algorithm 1 Unique Matching

Require: ground truth G = {g1, g2, . . . , gM}, prediction

P = {p1, p2, . . . , pN}, matching threshold t
Ensure: the match matrix TP ∈ {true, false}N×M

Initialize the cost matrix Cost ∈ RN×M

for each prediction pi ∈ P do
for each ground truth object gj ∈ G do

if IoU(gi, pj) > t then
Cost(i, j) = 1− IoU(pi, gj)

end if
end for

end for
if N > M then

pad N −M dummy zero columns to CostN×M

else
pad M −N dummy zero rows to CostN×M

end if
TPN×M ← run standard Hungarian algorithm, re-

move dummy rows or columns

for i from 1 to N do
for j from 1 to M do

if Cost(i, j) == 0 then
TP(i, j) = false

end if
end for

end for

forwardly extended to the entire IoU domain, such as us-

ing a threshold collection of {0.1, 0.2, ..., 0.9}. However,

querying AP scores at fixed IoU values can ignore small

segmentation changes, noted as the limited resolution in

Section 3.1.

We propose sorted Average Precision (sortedAP) as a

new metric that is sensitive to all segmentation changes.

The concept of sortedAP involves identifying all IoU values

at which the AP score drops, instead of querying AP scores

at fixed IoUs as the mAP. The AP score can only change

at the IoUs of each object where the object transitions from

true positive to false positive. Raising the matching thresh-

old from 0 to 1 will turn all matches into non-matches one

by one in the ascending order of IoU. In consequence, one

non-match will diminish a true positive and introduce a false

negative. Considering the sum of true and false positives is

constant, we rewrite the AP score as:

APt =
TPt

TPt + FPt + FNt
=

TPt

P + FNt
. (13)

We let TP0 and FN0 be true positives and false nega-

tives of the maximal possible match between two sets. This

can be obtained by the Unique Matching (Section 4.1) with

a tiny but non-zero fuzzy threshold. All possible AP scores

can then be computed by:

APtk =
TP0 − k

P + FN0 + k
, k = 1, 2, ..., TP0, (14)

where tk is the k-th lowest IoU of all matches. As shown

in Figure 2b, any segmentation differences will be reflected

by the positions of turning points. The sortedAP is defined

as the area under the AP curve and can be computed by

Algorithm 2. In the computation of sortedAP, the Unique

Matching runs only once, while it has to be performed mul-

tiply times for different IoUs in mAP.

Algorithm 2 Sorted Average Precision

Require: ground truth G = {g1, g2, . . . , gM}, prediction

P = {p1, p2, . . . , pN}
Ensure: the sortedAP score s ∈ R

Match: run Unique Matching with a fuzz threshold

1e−6

Count: true positives TP0 and false negatives FN0

Sort: arrange IoUs of all matches in increasing order

[IoU1, IoU2, . . . , IoUTP0
]

Initialize: APprev ← TP0

P+FN0
, tprev ← IoU1

Initialize: s ← tprev ·APprev

for k from 1 to TP0 do
APk ← TP0−k

P+FN0+k , tk ← IoUk

s ← s+ 1
2 · (tk − tprev) · (APk +APprev)

APprev ← APk, tprev ← tk
end for

5. Experiments and results
We also simulate imperfect results on the basis of ground

truth segmentation from real datasets, in order to observe

the behavior of different metrics. We choose the CVPPP

dataset [18] and the CervicalCell dataset [15], containing

clustered instances. We perform experiments per image be-

cause the effects, such as abrupt changes, will be covered

when averaged over a large population. We design three ex-

periments based on the fact that introducing errors gradually

and evenly will result in a smooth decrease in the evaluation

score.

Incremental falses. This experiment starts with two

identical sets of objects and alternately introduces new ob-

jects into each set. At each step, we randomly duplicate

an object and place it in a position where it does not over-

lap with any existing objects. This ensures that the newly

introduced object is always a false positive or false nega-

tive. In our experiment, we add two objects to one set, then

switch to the other set and repeat the process. The exper-

iment only concerns detection errors, as objects are either

perfectly matched or not matched at all.

Object erosion. At each step, morphological erosion is

performed to a random object with a 3×3 structuring ele-
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Figure 3. Comparison of different metric scores on simulated imperfect segmentation results. Three experiments (Incremental Falses,

Object Erosion, and Pixel Removal) create increasingly degraded results from the ground truth of real datasets (CVPPP and CervicalCell).

Since errors are gradually and evenly introduced, the evaluation score is supposed to smoothly decrease in response. In Figure 3a and

Figure 3d, the curve of AP, mAP, and sortedAP are identical, shown in mixed dark blue.

ment. Consequently, the segmentation quality will steadily

deteriorate. But we do not completely remove any objects.

Metric scores are reported between the continuously eroded

masks and the original set.

Pixel removal. Similar to the object erosion experiment,

we construct a sequence of increasingly degraded results by

deteriorating the segmentation quality of objects. However,

instead of handling one object per step, we randomly re-

move a fixed portion of pixels from all objects at each step.

This process simulates a situation where the segmentation

of most objects is at a similar quality level. The deficiencies

are more pronounced in this experiment.

The experiments conducted on the CVPPP and Cervi-

calCell datasets yielded similar results. In the incremental

false experiment (Figure 3a and Figure 3d), objects are ei-

ther a perfect match with an IoU of 1 or not matched at

all. Thus, segmentation inaccuracy does not play any role.

The AP, mAP, and sortedAP all degrade to the same score

in this case. All match-based metrics decrease smoothly

as expected. In contrast, the AJI fluctuates depending on

the size of introduced objects. The SBD score does not de-

crease in a strictly monotonic manner but instead exhibits

periodic plateaus. This is an instance of the error exemp-

tion (Section 3.1). In the alternating introduction of false

matches into two sets, errors introduced earlier can obscure

subsequent ones.

In the object erosion and pixel removal experiment, the

segmentation quality gets worse step by step. The AP and

mAP also show plateaus but for a different reason from

SBD in the incremental false experiment. This is due to

AP’s insensitivity to segmentation differences above or be-

low the match threshold. Using multiple thresholds by mAP

only improves sensitivity up to the scale of the threshold in-

terval. PQ explicitly considers segmentation quality in the

IoU range above the threshold. However, it faces a com-

mon issue of abrupt change at the match threshold as AP

and mAP. Combining the two factors above, mAP exhibits

a step-wise change, which is more noticeable in the pixel

removal experiment (Figure 3c and Figure 3f). PQ scores

will not be completely flat, but can drastically drop in a

narrow IoU range. In comparison, our proposed sortedAP

maintains sensitivity and continuity in all cases where other

metrics fail.

6. Conclusion

In this paper, we have analyzed existing evaluation met-

rics for instance segmentation from the perspective of sen-

sitivity, continuity, and equality. Although some metrics

are widely used in practice, we have found that no metric
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strictly satisfies all the properties under discussion. To ad-

dress this gap, we propose the sortedAP, which is sensitive

to any small segmentation changes, continuous over the en-

tire IoU domain, and treats objects equally. The proposed

Unique Matching approach can also be applied to AP, mAP,

and PQ, allowing its use under object overlap and match

IoU thresholds smaller than 0.5.
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