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Abstract

Instance segmentation is a fundamental computer vision
problem which remains challenging despite impressive re-
cent advances due to deep learning-based methods. Given
sufficient training data, fully supervised methods can yield
excellent performance, but annotation of groundtruth re-
mains a major bottleneck, especially for biomedical appli-
cations where it has to be performed by domain experts.
The amount of labels required can be drastically reduced by
using rules derived from prior knowledge to guide the seg-
mentation. However, these rules are in general not differen-
tiable and thus cannot be used with existing methods. Here,
we revoke this requirement by using stateless actor critic
reinforcement learning, which enables non-differentiable
rewards. We formulate the instance segmentation problem
as graph partitioning and the actor critic predicts the edge
weights driven by the rewards, which are based on the con-
formity of segmented instances to high-level priors on object
shape, position or size. The experiments on toy and real
data demonstrate that a good set of priors is sufficient to
reach excellent performance without any direct object-level
supervision.

1. Introduction

Instance segmentation is the task of segmenting all ob-

jects in an image and assigning each of them a different

id. It is the necessary first step to analyze individual ob-

jects in a scene and is thus of paramount importance in

many computer vision applications. Over the recent years,

fully supervised instance segmentation methods have made

tremendous progress both in natural image applications and

in scientific imaging, achieving excellent segmentations for

very difficult tasks [29, 11].

A large corpus of training images is hard to avoid when

the segmentation method needs to take into account the full

variability of the natural world. However, in many practi-

cal segmentation tasks the appearance of the objects can be

expected to conform to certain rules that are known a pri-
ori. Examples include surveillance, industrial quality control

and especially medical and biological imaging applications

where full exploitation of such prior knowledge is particu-

larly important as the training data is sparse and difficult to

acquire: pixelwise annotation of the necessary instance-level

groundtruth for a microscopy experiment can take weeks or

even months of expert time. The use of shape priors has a

strong history in this domain [35, 14], but the most power-

ful learned shape models still require groundtruth [34] and

generic shapes are hard to combine with the CNN losses

and other, non-shape, priors. For many high-level priors it

has already been demonstrated that integration of the prior

directly into the CNN loss can lead to superior segmenta-

tions while significantly reducing the necessary amounts of

training data [28]. However, the requirement of formulating

the prior as a differentiable function poses a severe limitation

on the kinds of high-level knowledge that can be exploited

with such an approach. Our contribution addresses this lim-

itation and establishes a framework in which a rich set of

non-differentiable rules and expectations can be used to steer

the network training.

To circumvent the requirement of a differentiable loss

function, we turn to the reinforcement learning paradigm,

where the rewards can be computed from a non-differentiable

cost function. We base our framework on a stateless actor-

critic setup [38], providing one of the first practical applica-

tions of this important theoretical construct. In more detail,

we solve the instance segmentation problem as agglomer-

ation of image superpixels, with the agent predicting the

weights of the edges in the superpixel region adjacency graph.

Based on the predicted weights, the segmentation is obtained

through (non-differentiable) graph partitioning. The seg-

mented objects are evaluated by the critic, which learns to

approximate the rewards based on object- and image-level

reasoning (see Fig. 1).

The main contributions of this work can be summarized

as follows: (i) we formulate instance segmentation as a RL

problem based on a stateless actor-critic setup, encapsulating

the non-differentiable step of instance extraction into the en-
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vironment and thus achieving end-to-end learning; (ii) we do

not use annotated images for supervision and instead exploit

prior knowledge on instance appearance and morphology

by tying the rewards to the conformity of the predicted ob-

jects to pre-defined rules and learning to approximate the

(non-differentiable) reward function with the critic; (iii) we

introduce a strategy for spatial decomposition of rewards

based on fixed-sized subgraphs to enable localized supervi-

sion from combinations of object- and image-level rules. (iv)

we demonstrate the feasibility of our approach on synthetic

and real images and show an application to two important

segmentation tasks in biology. In all experiments, our frame-

work delivers excellent segmentations with no supervision

other than high-level rules.

2. Related work
Reinforcement learning has so far not found significant

adoption in the segmentation domain. The closest to our

work are two methods in which RL has been introduced to

learn a sequence of segmentation decision steps as a Markov

Decision Process. In the actor critic framework of [3], the

actor recurrently predicts one instance mask at a time based

on the gradient provided by the critic. The training needs

fully segmented images as supervision and the overall sys-

tem, including an LSTM sub-network between the encoder

and the decoder, is fairly complex. In [26], the individual

decision steps correspond to merges of clusters while their

sequence defines a hierarchical agglomeration process on

a superpixel graph. The reward function is based on Rand

index and thus not differentiable, but the overall framework

requires full (super)pixelwise supervision for training.

Reward decomposition was introduced for multi agent

RL by [45] where a global reward is decomposed into a per

agent reward. [4] proves that a stateless RL setup with de-

composed rewards requires far less training samples than a

RL setup with a global reward. In [52] reward decomposition

is applied both temporally and spatially for zero-shot infer-

ence on unseen environments by training on locally selected

samples to learn the underlying physics of the environment.

The restriction to differentiable losses is present in all

application domains of deep learning. Common ways to

address it are based on a soft relaxation of the loss that can

be differentiated. The relaxation can be designed specifi-

cally for the loss, for example, Area-under-Curve [16] for

classification or Jaccard Index [7] for semantic segmenta-

tion. These approaches are not directly applicable to our use

case as we aim to use a variety of object- and image-level

priors, which should be combined without handcrafting an

approximate loss for each case. More generally, but still

for a concrete task loss, Direct Loss Minimization has been

proposed in [43]. For semi-supervised learning of a classifi-

cation or ranking task, Discriminative Adversarial Networks

have been proposed as a means to learn an approximation

to the loss [15]. Most generally, [21] propose to train a

surrogate neural network which will serve as a smooth ap-

proximation of the true loss. In our setup, the critic can

informally be viewed as a surrogate network as it learns to

approximate the priors through the rewards by Q-learning.

Incorporation of rules and priors is particularly impor-

tant in biomedical imaging applications, where such knowl-

edge can be exploited to augment or even substitute scarce

groundtruth annotations. For example, the shape prior is

explicitly encoded in popular nuclear [41] and cellular [44]

segmentation algorithms based on spatial embedding learn-

ing. Learned non-linear representations of the shape are used

in [34], while in [25] the loss for object boundary prediction

is made topology-aware. Domain-specific priors can also

be exploited in post-processing by graph partitioning [37].

Interestingly, the energy minimization procedure underly-

ing the graph partitioning can also be incorporated into the

learning step [30, 42, 1].

3. Methods
The task of instance segmentation can be formalized as

transforming an image x into a labeling y that maps each

pixel to a label value. An instance corresponds to the max-

imal set of pixels with the same label value. Typically,

the instance segmentation problem is solved via supervised

learning, i.e. using a training set with groundtruth labels

ŷ. Note that y is invariant under the permutation of label

values, which makes it difficult to formulate instance seg-

mentation in a fully differentiable manner. Most approaches

first predict a ”soft” representation with a CNN, e.g. affini-

ties [29, 19, 49], boundaries [6, 18] or embeddings [13, 33]

and apply non-differentiable post-processing, such as ag-

glomeration [18, 5], density clustering [31, 12] or partition-

ing [2], to obtain the instance segmentation. Alternatively,

proposal-based methods predict a bounding-box per instance

and then predict the instance mask for each bounding-box

[24]. Furthermore, the common evaluation metrics for in-

stance segmentation [32, 39] are also not differentiable.

Our main motivation to explore RL for the instance seg-

mentation task is to circumvent the restriction to differen-

tiable losses and - regardless of the loss - to make the whole

pipeline end-to-end even in presence of non-differentiable

steps that transform pixelwise CNN predictions into in-

stances.

We formulate the instance segmentation problem using a

region adjacency graph G = (V,E), where the nodes V cor-

respond to superpixels (clusters of pixels) and the edges E
connect nodes that belong to spatially adjacent superpixels.

Given edge weights W , the instance segmentation is ob-

tained by partitioning the graph, here using an approximate

multicut solver [27]. Together, the image data, superpixels,

graph and the graph partitioning make up the environment

E of our RL setup. Based on the state s of E , the agent A
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Figure 1: Interaction of the agent with the environment: (a) shows the state, which is composed of the image and superpixels;

(b) depicts the agent, which consists of the actor and critic networks as well as the feature extractor that computes the node

input features; (c) given the state, the agent performs the actions by predicting edge weights on the graph; (d) the environment,

which includes the image, superpixels, graph and graph partitioning based on the weights predicted through agent actions ;

(e) rewards are obtained by evaluating the segmentation arising from the graph partitioning, based on pre-defined and data

dependent rules. The rewards are given back to the agent where they are used for training.

predicts actions a. Here, the actions are interpreted as edge

weights W and used to partition the graph. The reward r is

then computed based on this partitioning. Our agent A is a

stateless actor-critic [22], represented by two graph neural

networks (GNN) [20]. The actor predicts the actions a based

on the graph and its node features F . The node(superpixel)

features are computed by pooling together the corresponding

pixel features based on the raw image data.

We compute the node features F with a UNet [40] that

takes the image as input and outputs a feature vector per pixel.

These features are spatially averaged over the superpixels to

obtain F . The feature extractor UNet is part of the agent A,

thus training it end-to-end with the actor and critic networks

(Fig. 1). In low data regimes it is also possible to use a pre-

trained and fixed feature extractor or to combine the learned

features with hand-crafted ones.

Crucially, the reinforcement setup enables us to use both

a non-differentiable instance segmentation step and reward

function, by encapsulation of the “pixels to instances” step in

the environment and learning a policy based on the rewards

with the stateless actor critic.

3.1. Stateless Reinforcement Learning Setup

Unlike most RL settings [46], our approach does not re-

quire an explicitly time dependent state: the actions returned

by the agent correspond to the real-valued edge weights in

[0, 1], which are used to compute the graph partitioning. Any

state can be reached by a single step from the initial state

and there exists no time dependency in the state transition.

Unlike [26], we predict all edge values at once which al-

lows us to avoid the iterative strategy of [3] and deliver and

evaluate a complete segmentation in every step. Hence, we

implement a stateless actor critic formulation.

Stateless RL was introduced in [38] to study the con-

nection between generative adversarial networks and actor

critics, our method is one of the first practical applications

of this concept. Here, the agent consists of an actor, which

predicts the actions a and a critic, which predicts the action

value Q (expected future discounted reward) given the ac-

tions. The stateless approach simplifies the action value: it

estimates the reward for a single step instead of the expected

sum of discounted future rewards for many steps. We have

explored a multi-step setup as well, but found that it yields

inferior results for our application; details can be found in the

App. A.8. Furthermore, we compute sub-graph rewards in-

stead of relying on a single global reward in order to provide

a more localized reward signal (see Section 3.2 for details).

The actor corresponds to a single GNN, which predicts

the mean and variance of a Normal distribution for each

edge. The actions a are determined by sampling from this

distribution and applying a sigmoid to the result to obtain

continuous edge weights in the value range [0, 1]. The GNN

takes the state s = (G,F ) as input arguments and its graph
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convolution for the ith node is defined as in [20]:

fi = γπ

⎛
⎝fi,

1

|N(i)|
∑

j∈N(i)

φπ (fi, fj)

⎞
⎠ (1)

where γπ as well as φπ are MLPs, (·, ·) is the concatenation

of vectors and N(i) is the set of neighbors of node i. The

gradient of the loss for the actor is given by:

∇θLactor = ∇θ
1

|SG|
∑
sg∈G

⎡
⎣α ∑

â∈sg

log(πθ(â|s))−Qsg(s, a)

⎤
⎦

(2)

This loss gradient is derived following [22]. We adapt it

to the sub-graph reward structure by calculating the joint

action probability of the policy πθ over each sub-graph sg
in the set of all sub-graphs SG. Using this loss to optimize

the policy parameters θ minimizes the Kullback-Leibler

divergence between the Gibbs distribution of action values

for each sub-graph Qsg(s, a) and the policy with respect to

the parameters θ of the policy. α is a trainable temperature

parameter which is optimized following the method

introduced by [22].

The critic predicts the action value Qsg for each sub-

graph sg ∈ SG. It consists of a GNN Qsg(s, a) that takes

the state s = (G,F ) as well as the actions a predicted by

the actor as input and predicts a feature vector for each edge.

The graph convolution from Equation 1 is slightly modified:

fi = γQ

⎛
⎝fi,

1

|N(i)|
∑

j∈N(i)

φQ

(
fi, fj , a(i,j)

)⎞⎠ (3)

again γQ and φQ are MLPs. Based on these edge features

Qsg is predicted for each sub-graph via an MLP. Here, we

use a set of subgraph sizes (typically, 6, 12, 32, 128) to gener-

ate a supervison signal for different neighborhood scales. A

given MLP is only valid for a fixed graph size, so we employ

a different MLP for each size. The loss for the critic is given

by:

Lcritic =
1

|SG|
∑
sg∈G

1

2
(Qδ

sg(s, a)− r)2 (4)

Minimizing this loss with respect to the action value func-

tion’s parameters δ minimizes the difference between the

expected reward and action values Qδ
sg(s, a).

3.2. Localized Sub-graph Rewards

In most RL applications a global scalar reward is pro-

vided per state transition. In our application of graph-based

instance segmentation, it is instead desirable to introduce

several more localized rewards in order to learn from a re-

ward for the specific action, rather than a global scalar. Here,

reward decomposition is natural because we evaluate the

segmentation quality per object and can use the object scores

to provide a localized reward. In order to formalize this idea,

we have designed our actor critic (Section 3.1) to learn from

sub-graph rewards.

A good set of sub-graphs should fulfill the following

requirements: each sub-graph should be connected so that

the input to the MLP that computes the activation value for

the sub-graphs is correlated. The size of the sub-graphs

should be adjustable and all sub-graphs should be extracted

with the exact same size to be valid inputs for the MLP. The

union of all sub-graphs should cover the complete graph so

that each edge contributes to at least one action value Qsg.

The sub-graphs should overlap to provide a smooth sum of

action values. We have designed Alg. 1 to extract a set of

sub-graphs according to these requirements. Fig. 2 shows an

example sub-graph decomposition.

While some of the rewards used in our experiments can be

directly defined for sub-graphs, most are instead defined per

object (see App. A.2 for details on reward design). We use

the following general procedure to map object-level rewards

to sub-graphs: first assign to each superpixel the reward of its

corresponding object. The reward per edge is determined by

the maximum value of its two incident superpixels’ rewards.

The edge rewards are averaged to obtain the reward per

sub-graph.

By taking the maximum we assign the higher score to

edges whose incident superpixels belong to different objects,

because they probably correspond to a correct split. Note that

the uncertainty in the assignment of low rewards can lead to

a noisy reward signal, but the averaging of the edge rewards

over the sub-graphs and the overlaps between the sub-graphs

smooth the rewards. We have also explored a different actor

critic setup that can use object level rewards directly, with no

sub-graph extraction and mapping. However, this approach

yields inferior results, see App. A.3 for details.

4. Experiments

We evaluate our approach on three instance segmenta-

tion problems: one synthetic and two real. For a proof-

of-principle, we construct a synthetic dataset with circular

shapes on structured background, showing how our frame-

work can exploit simple geometric priors. Next, we apply

the method to a popular microscopy benchmark dataset for

nucleus segmentation [10]. Finally, we consider a challeng-

ing biological segmentation problem with boundary-labeled

cells. Here, we evaluate both learning restricted to prior

rules and mixed supervision combining rule-based and di-

rect rewards computed from groundtruth annotations. The

problem setup, network architectures and hyperparameters

are reported in detail in App. A.9.
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Figure 2: The graph is subdivided into sub-graphs, each

sub-graph is highlighted by a different color. All sub-

graphs have the same number of edges (here 3). Overall,

we use a variety of sizes covering different notions of

locality.

Figure 3: An example reward landscape Circle Hough

Transform (CHT) rewards. High rewards are given if the

overall number of predicted objects is not too high and if

the respective object has a large CHT value.

4.1. Synthetic Data: Circles on Structured Ground

We create synthetic images of circles on a structured back-

ground and segment this data using only simple geometric

rules. Superpixels were generated with the mutex watershed

[49] applied to the gaussian gradient of the image. Here,

we demonstrate that the actor critic can be trained without

any direct object-level supervision and apply a simplified

setup with a fixed pixel feature extractor, pre-trained through

self-supervision (see App. A.1).

The object-level reward is based on the Circle Hough

Transform (CHT) [23]. It is combined with an estimate for

the total number of objects in the image as an additional

(a) Reinforcement learning output.

(b) Mutex watershed baseline.

Figure 4: Synthetic data. a) top left to right: groundtruth

segmentation, raw data, superpixels and visualization of the

actions (merge actions in green, split actions in red). Bot-

tom left to right: pre-trained pixel embeddings, superpixel

edges, segmentation result and visualization of the rewards

(light green for high rewards, dark red for low rewards. b)

comparison of segmentation from our method and the mutex

watershed.

global reward. The global reward gives useful gradients

during early training stages: when too few potential objects

are found in the prediction, a low reward can be given to the

tentative background object. If too many potential objects

are found, a low reward can be given to all the foreground

objects with a low CHT value. The surface created by the

per-object and global reward is shown in Fig. 3. The exact

reward computation can be found in App. A.11.

Fig. 4 shows the output of all algorithm components on

a sample image. We also computed results with the mu-

tex watershed [49], a typical algorithm for boundary based

instance segmentation in microscopy. Texture within ob-

jects and structured background are inherently difficult for

region-growing algorithms, but our approach can exploit
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Method Superpixel mAP IoU50 IoU75

UNet - 0.710 0.900 0.756

StarDist - 0.645 0.938 0.736

Cellpose - 0.666 0.931 0.776

UNet + MC GT 0.674 0.806 0.702

ours (sup.) GT 0.766 0.907 0.799

Otsu - 0.554 0.763 0.579

ours (unsup.) GT 0.743 0.916 0.787

ours (unsup.) UNET 0.671 0.872 0.704

ours (unsup.) RAW 0.453 0.785 0.439

sp gt UNET 0.793 0.98 0.852

sp gt RAW 0.554 0.969 0.505

Table 1: Nuclei segmentation: for mAP and IoU higher

values are better. Methods above the first middle line were

trained fully supervised. Methods below the first middle

line were trained without groundtruth, the results below the

second middle line indicate the quality of the superpixels

projected to the groundtruth (best possible result that can be

achieved with the given superpixels).

higher-level reasoning along with low-level information and

achieve a good segmentation.

4.2. Real Data: Nucleus Segmentation

Nuclei are a very frequent target of instance segmentation

in microscopy, which is also reflected in the large amount

of publicly available annotated data. The availability of

training data sparked the development of popular pre-trained

solutions, such as a generalist UNet [17] or StarDist [41]

and CellPose [44] which both have an (implicit) shape prior.

Also, due to ubiquity of nuclei in microscopy, detailed prior

knowledge exists on their shape and their appearance un-

der different stainings. The experiments in this section aim

to answer the following questions: i) given fully annotated

groundtruth images for training, is there an advantage in us-

ing our RL formulation with object-level rewards compared

to commonly used fully supervised baselines? ii) given su-

perpixels that can be combined into the correct solution, but

no other direct supervision, can our approach learn to com-

bine the superpixels correctly only from high-level rules?

iii) what happens if superpixels are suboptimal? For data,

we turn to the dataset of [10] and select images that contain

nuclei of medium size (175 for training and 22 for test).

Features are learned end-to-end. In the unsupervised set-

ting, we compute the reward by combining several object

descriptors: eccentricity, extent, minor diameter, perimeter,

solidity as well as mean, maximum and minimum intensity

per object. The object reward is then given by the normal-

ized sum of square distances of these quantities and their

expected value. Objects larger than 15,000 pixels are con-

sidered to belong to the background and are not assigned

a reward. Since the superpixels serve as fixed input into

our model that do not get modified, the accuracy of our seg-

mentations is bound by their accuracy. To investigate their

influence, we evaluate our approach with three different sets

of superpixels: “GT”, where we intersect the superpixels

with the groundtruth object masks to ensure that a correct

segmentation can be recovered, “UNET”, where we com-

pute the superpixels using predictions of a pre-trained U-Net

as an edge detector and “RAW”, where we only take into

account the raw image data. See A.12 for more details on

superpixels and object descriptors.

Tab. 1 summarizes the results, with a comparison to pop-

ular generalist pre-trained nuclear segmentation methods:

StarDist [41], Cellpose [44] and UNet [17]. For StarDist

and Cellpose, we use the pre-trained models provided with

the papers. The UNet is trained on the same images as

StarDist, the instance segmentation is recovered either by

applying connected components to the boundary-subtracted

foreground prediction (“UNet”) or, to obtain a comparison

conditioned on a particular set of superpixels, by using the

UNet boundary predictions and superpixels described above

as input to Multicut graph-based agglomeration (“UNet +

MC”). Otsu threshold serves as a simple unsupervised base-

line [36], where binarizing the image is followed by con-

nected components to obtain the instance segmentation.

For the first question, we train our pipeline fully super-

vised (“ours (sup.)”) as described in App. A.10: we use

pixelwise groundtruth, but can also exploit our RL formula-

tion where the loss is assigned to individual objects through

the non-differentiable graph agglomeration step. Here, our

method performs better than all baselines without RL, so

there is clearly an advantage to using object-level supervi-

sion (as also demonstrated recently for non-RL setups, e.g.

by [51]).

For the other two questions, we train our method using

only rule-based rewards (“ours (unsup.)”). Given superpixels

from which the groundtruth image can be recovered (”GT”),

we then achieve better segmentation quality than the fully

supervised baselines and the gap in performance between

our unsupervised and supervised approach is smaller than

the gap to the runner-up baseline. Of note, our unsuper-

vised model also outperforms the “UNet + MC” baseline

using the same ”GT” superpixels, so its performance cannot

be explained just by the use of groundtruth in superpixel

generation. Example results and failure cases are shown in

App. A.12.

In the third experiment, we use a pretrained UNet as an

edge detector to create superpixels of ”medium” quality and

again obtain strong results, outperforming StarDist, Cell-

Pose and UNet+MC with ”GT” superpixels. Finally, with

our worst set of superpixels obtained directly from the raw

data, the method can learn to exploit the rules, but is clearly

hindered by the superpixel quality.
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Method VI VI merge VI split

sp gt 1.266 0.672 0.594

ours 2.213 0.839 1.374

ours (semisup.) 1.634 0.733 0.901

ours (handcrafted) 2.523 0.987 1.536

UNet + MC 3.361 3.019 0.342

contrastive 4.440 1.155 3.28

Table 2: Cell segmentation results, measured by variation

of information (VI) [32]. This entropy-based metric is

commonly used to evaluate crowded segmentations in mi-

croscopy. We also report its merge and split component

that measure the over-/under-segmentation error respectively.

Lower values are better.

4.3. Real Data: Cell Segmentation

Biomedical applications often require segmentation of

objects of known morphology arranged in a regular pattern

[47]. Such data presents the best use case for our algorithm

as the reward function can leverage such priors. We address

a cell segmentation problem from developmental biology,

where cells often follow stereotypical shapes and arrange-

ment: 317 drosophila embryo images from [8], including 10

with expert annotations used as test data. Note that several

pre-trained networks are available for cell segmentation in

light microscopy [44, 48, 50]; however, they produce sub-par

results on this data due to experimental differences.

The rewards express that the cells are arranged in a radial

pattern, with the average size known from other experiments

(see Fig. 5). We set a high reward for merging superpixels

that certainly belong to the background (close to the image

boundary or center). For background edges near the fore-

ground area, we modulate the reward by the circularity of

the overall foreground contour. For the likely foreground

edges, we compute object-level rewards by fitting a rotated

bounding box to each object and comparing its radii and ori-

entation to template values. We use a weight profile based on

the known embryo width to combine object and background

rewards (App. A.6).

More formally, the rewards are calculated as follows: for

each edge, we define the position h as the average of the

centers of the two incident superpixels. Given the image

center c, the radius of a circle that approximately covers the

foreground j and the (maximal) image border position m,

we use a gaussian kernel K(·) for weighting and define edge

reward redge:

rbg =

⎧⎨
⎩
K
(

||h−c||
γ

)
(1− a), if h ≤ j

K
(

||m−h||
η

)
(1− a), otw

(5)

rfg = K
( ||h− j||

δ

)
max(ro1, ro2) (6)

redge = rfg + rbg (7)

Here γ, η and δ are normalization constants. The kernel

function in Eq. 5 determines the background probability of

an edge; 1− a constitutes a reward that favors merges. It is

scaled by the background probability. The object rewards ro
are found by fitting a rotated bounding box to the object and

then comparing orientation and extent to expected values

known from previous experiments. They are mapped to

edge rewards ro1, ro2 using the maximum value of the two

incident objects.

We pre-compute superpixels by using boundary predic-

tions as input to a watershed seeded from local maxima.

We use the UNet from [50], which was trained on roughly

similar images. As it was trained on plant cells in different

microscope modality, its prediction is far from perfect, espe-

cially around the inner circle, see Fig. 5“Edge prediction”.

We combine the learned node features with hand-crafted

features: the normalized polar coordinate of the superpixel

center and the normalized superpixel size. Fig. 5 shows

visualisations of the learned and hand-crafted features. In-

terestingly, the learned features converge to a representation

that resembles a semantic segmentation of boundaries.

Tab. 2 shows the results: “ours” is the method described

above; for “ours (semisup.)” we train a model that addi-

tionally receives direct supervision from groundtruth for a

single patch using the reward from App. A.10 and for “ours

(handcrafted)” we only use the hand-crafted features and

not the learned features. We include the UNet from [50]

with Multicut for instance segmentation (“UNet + MC”) as

well as the method of [13] trained on the same data as [50]

(“contrastive”) as baselines. Since only 10 images of the

dataset are annotated, we cannot efficiently finetune any of

the popular cell segmentation networks on this dataset. We

also project the superpixels to their respective groundtruth

cluster (“sp gt”) to indicate the best possible solution that

can be achieved with the given superpixels. Our approach

clearly outperforms the baseline methods trained on the data

from [50]. While predictions are not perfect (white arrows

in Fig. 5, prior rules turn out to be sufficient to assemble

most cells correctly. The remaining errors are caused by

objects not fully conforming to the priors (”bent” rather than

straight oval cells) or by a very weak boundary prediction.

Furthermore, we see that the learned features significantly

improve results and that the semi-supervised approach pro-

vides a large boost, even with a single patch used for direct

supervision. We only report results for the best model as
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Figure 5: Cell segmentation experiment. Top left to right: groundtruth segmentation; raw data; boundary predictions;

superpixel over-segmentation; visualization for the actions on every edge (green = merge action, red = split action). Bottom

left to right: a) handcrafted features per superpixel; b) learned features averaged over superpixels; c) learned features per pixel;

Multicut segmentations; visualization of the rewards (light green = high reward, dark red = low reward). For all features, we

use the first 3 PCA components for visualisation. White arrows point to remaining errors.

measured by the reward on a validation set across several

training runs. App. Fig. 8 shows validation reward curves

consistently improve during training for all random seeds.

5. Discussion and Outlook

We introduced an end-to-end instance segmentation al-

gorithm that can exploit non-differentiable loss functions

and high-level prior information. Our novel RL approach

is based on the stateless actor-critic and predicts the full

segmentation at every step, allowing us to assign rewards to

all objects and reach stable convergence. The segmentation

problem is formulated as graph partitioning; we design a

reward decomposition algorithm which maps object- and

image-level rewards to sub-graphs for localized supervision.

Our experiments demonstrate good segmentation quality on

synthetic and real data using only rule-based supervision

without any object- or pixel-level labels, such as centers,

boxes or masks. Furthermore, in case of full supervision, our

method enables end-to-end instance segmentation with direct

object-level reasoning, which will allow for post-processing-

aware training of segmentation CNNs. In the future, we plan

to explore other tasks and reward functions and will further

study the semi-supervised setup that showed very promising

initial results.

Limitations Our method relies on superpixels which are

fixed and not optimized jointly, so the upper bound on the

performance is defined by superpixel accuracy. We believe

an extension to pixels is possible and envision working on

this in the future, but the current setup will not scale to the

pixel level directly. Also, our method is limited to prob-

lems where consistent prior rules can be formulated for all

instances. While this is the case for many applications in

life science and medical imaging, not all object classes in

the natural world can be described in this way. Here, our

method could contribute by complementing training anno-

tations with rules, reducing the overall labelling load in a

semi-supervised setting. Finally, our approach requires non-

trivial reward engineering as a trade-off for not performing

any annotations.
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